Formal Methods in Post-Quantum Cryptography – CRYSTALS-Kyber

Katharina Kreuzer
k.kreuzer@tum.de

Supervisors: Tobias Nipkow & Javier Esparza
Collaborators: Manuel Barbosa (Porto, PRT), Dominique Unruh (Tartu, EST)

Motivation

- Progress on quantum computers will eventually break RSA & Diffie-Hellman
- Development of post-quantum crypto also for cyber-physical systems
- Kyber winner of NIST standardisation

Goal

Formalize CRYSTALS-Kyber’s public key encryption (PKE) algorithms, and formally verify their correctness and security properties.

Tool

- Interactive theorem prover
- Isabelle is foundational
- Huge libraries in Archive of Formal Proofs (AFP)

CRYSTALS-Kyber

Definition: A PKE is δ-correct iff

$$E[\max_{m \in M} P[decrypt(sk, encrypt(pk, m)) \neq m]] \leq \delta$$

where the expectation is taken over $(pk, sk) \in R$ key_gen.

Problem: Use of centred mod operation implies $\| \cdot \|_\infty$ is only pseudo-norm \Rightarrow Error in pen-and-paper proof

Solution: Additional property $q \equiv 1 \mod 4$
 \Rightarrow Alternative proof without homogeneity
 \Rightarrow Fulfilled by properties of parameters for NTT

Problem: Decryption is dependent on secret key
 \Rightarrow Original δ cannot be reduced using the mLWE hardness assumption as claimed in [1]

Solution: Modification of δ wrt. original claim
 \Rightarrow δ' dependent on worst case message and keys

Correctness

Definition: Module Learning with Errors (mLWE)

Given $A \in R_{q_n}^{n \times m}$, an error $e \in R_{q_n}$ chosen according to the centered binomial distribution and a target $b \in R_{q_n}$. Then find a solution $z \in R_{q_n}$ such that $A z + e = b$.

Avantage against mLWE:

$$\text{Adv}^{mLWE} = |P[\text{guess mLWE}] - P[\text{guess coin flip}]|$$

theorem concrete_security_kyber:
 assumes lossless: ind_cpa.lossless A
 shows ind_cpa.adv oracle $A \leq$ mlwe.adv (red1 A) + mlwe.adv (red2 A)

IND-CPA Security

Future work

- Formalization of security proofs against quantum attackers (eg. One-Way-to-Hiding Lemma)
- Formalization of Kyber KEM and δ/δ' relation
- Formalization of hardness assumptions (@ CADE29)

References

