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Abstract

Population protocols are a model of distributed computation by an arbitrary number of
identical finite-state agents. The agents compute the answer to a question about their
initial population by interacting in pairs until they reach a stable consensus. To au-
tomatically reason about the computation of population protocols, we introduce stage
graphs: formal objects proving that the agents compute the correct answer for each of
the infinitely many initial populations. Although every correct population protocol can
be verified by a stage graph, deciding if a protocol is correct has high theoretical com-
plexity. In practice however, we can efficiently verify many population protocols by
automatically constructing a stage graph that resembles correctness proofs written by
humans. The resulting stage graph helps to understand how the protocol works, how
fast it is, and why it is correct or incorrect.

In the closely related chemical reaction network model, agents are molecules that ran-
domly interact according to chemical reactions. The simulation-based analysis of this
stochastic model quickly becomes infeasible if it requires a large number of simulations
or if each simulation involves many interactions. To make the analysis more efficient,
we introduce segmental simulation: an approximate simulation approach based on mem-
oization. It speeds up the simulation process by reusing parts of previous simulations
to generate new ones. We show how to combine segmental simulation with other ap-
proximate simulation approaches for even better performance. Together with a new
fully automated hybrid simulation scheme, we can significantly speed up the gener-
ation of trajectories and correctly predict the transient behavior of complex stochastic
systems.
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Zusammenfassung

Populationsprotokolle sind ein Modell der verteilten Berechnung durch eine beliebige An-
zahl von identischen Agenten, die endlich viele Zuständen haben. Die Agenten berech-
nen die Antwort auf eine Frage über ihre initiale Population. Dafür interagieren sie
paarweise bis ein stabiler Konsens herrscht. Um die Berechnung von Populationspro-
tokollen automatisch zu analysieren, führen wir Phasengraphen ein: formale Objekte,
die beweisen, dass die Agenten für jede der unendlich vielen initialen Populationen
die richtige Antwort berechnen. Obwohl jedes korrekte Populationsprotokoll durch
einen Phasengraphen verifiziert werden kann, hat das Entscheiden, ob ein Protokoll
korrekt ist, eine hohe theoretisch Komplexität. In der Praxis können wir jedoch viele
Populationsprotokolle effizient verifizieren, indem wir automatisch einen Phasengra-
phen konstruieren, der Korrektheitsbeweisen von Menschen ähnelt. Der resultierende
Phasengraph hilft zu verstehen, wie das Protokoll funktioniert, wie schnell es ist und
warum es korrekt oder inkorrekt ist.

Im eng verwandten Modell der chemischen Reaktionsnetzwerke interagieren Moleküle
zufällig gemäß chemischer Reaktionen. Die simulationsbasierte Analyse dieses stochas-
tischen Modells wird schnell unpraktikabel, wenn eine große Anzahl von Simulationen
erforderlich ist oder jede Simulation viele Interaktionen erfordert. Um die Analyse ef-
fizienter zu gestalten, führen wir die Segmentsimulation ein: eine approximative Simu-
lationstechnik basierend auf Memoisation. Sie beschleunigt den Simulationsprozess,
indem Teile früherer Simulationen wiederverwendet werden, um neue zu generieren.
Wir zeigen, wie man die Segmentsimulation mit anderen approximativen Simulations-
ansätzen kombinieren kann, um eine noch bessere Leistung zu erzielen. Zusammen mit
einem neuen, vollautomatischen Hybrid-Simulationsverfahren können wir die Gene-
rierung von Simulationen signifikant beschleunigen und das transiente Verhalten kom-
plexer, stochastischer Systeme korrekt vorhersagen.
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1 Introduction

“The totality is not, as it were, a mere
heap, but the whole is something besides
the parts.”1

Aristotle, Metaphysics, 4th cent. BC

Observing the behavior of a single ant reveals little about the intricate dynamics of an
entire ant colony, just as studying the flight patterns of individual birds fails to capture
the mesmerizing coordination of a flock. These examples illustrate Aristotle’s profound
insight that the whole is more than just a collection of parts. This concept is especially
relevant when trying to comprehend the dynamics of systems consisting of multiple in-
teracting entities, such as population protocols and chemical reaction networks. Despite the
fact that every entity follows simple rules, the interactions between the large number
of entities give rise to global behavior that is challenging to analyze and understand.

In 2004, Angluin et al. considered the following scenario: We are tasked to detect
whether there are at least five unhealthy birds in a flock. Each bird is equipped with a
small sensor that can detect if the bird’s temperature is elevated. These sensors have a
limited amount of memory and can only communicate when two birds happen to be
in close proximity. Despite these limitations, there is a simple protocol that first col-
lects the information about the total number of unhealthy birds in a single sensor and
then propagates whether there were at least five of them. Notably, this protocol works
regardless of the number of healthy and unhealthy birds in the flock. Furthermore,
there even is a protocol to determine if at least 5% of the birds are sick, although a sin-
gle sensor cannot even count the total number of birds. Inspired by this computation
in passively mobile sensor networks, Angluin et al. introduced a model of distributed
computation known as population protocols [AAD+04; AAD+06]. In this model, iden-
tical finite-state agents interact in pairs to answer a question about the initial state of
the system. The decision is made through stable consensus, where all agents eventu-
ally agree on the answer and then never change their minds. Similar to the protocol
for counting unhealthy birds, population protocols are typically designed to answer a
specific question. This is a challenging and error-prone task since they cannot be pro-
grammed directly but are defined through a list of rendezvous transitions. Naturally,
we would like to analyze the behavior of a population protocol and even verify that it
works as intended. However, similar to the study of an ant colony through a single ant,
we only know how two agents interact but need to argue about the behavior of an arbi-

1This quote from Aristotle’s Metaphysics is a translation by W. D. Ross [Ari85, 1045a7-1045a20]. It is
often misquoted as: “The whole is more than the sum of its parts.”
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1 Introduction

trary number of agents. In this work, we introduce a technique for efficiently verifying
population protocols based on stage graphs, formal objects that prove the correctness
of a protocol and provide valuable insights into its computation process.

In order to obtain a comprehensive understanding of distributed computation, re-
searchers have investigated multiple theoretical aspects of population protocols. These
include the class of questions they can answer (expressive power), the number of in-
teractions needed to compute the answer (speed), and the minimal number of states
the agents require (size). A central result is that population protocols can precisely an-
swer questions that can be defined in Presburger arithmetic [AAE+07]. The proof of
this result on the expressive power even gives a synthesis procedure that constructs a
protocol for every possible Presburger formula. However, while the resulting protocol
is fast, its size grows exponentially with the length of the formula. As this thesis focuses
on the efficient analysis of population protocols, we provide only a high-level overview
of our related work on the synthesis of population protocols that are both fast and have
a small size.

Population protocols are closely related to chemical reaction networks, a model describ-
ing molecules in a well-mixed solution that interact through chemical reactions. Chem-
ical reaction networks can be understood as a continuous-time variant of population
protocols where the number of agents can vary during the evolution of the system.
They are used to model stochastic systems with applications in biochemistry [CBH+09]
but also in epidemiology [LMV22] and molecular programming [SSW10]. Analyzing
the properties and behavior of these modeled systems poses significant challenges: Like
for population protocols, we have only access to a list of possible chemical reactions.
Moreover, because the number of molecules can grow, the state space can be infinite.
One possible approach to address this problem is to estimate system properties by sam-
pling trajectories. However, this simulation-based analysis often requires a large num-
ber of simulations to gather sufficient statistics about the system’s behavior. The process
can be particularly slow when each simulation involves sampling a high number of in-
teractions. To overcome these limitations, we propose a new approximate simulation
technique called segmental simulation which is based on the concept of memoization2.
Segmental simulation accelerates the generation of new simulations by reusing parts of
previous simulations, thereby enabling efficient analysis of complex chemical reaction
networks.

1.1 Literature Overview

We provide a chronological overview of the literature that led to the research in this
thesis and focus on related models and research directions. A more detailed discussion
of work related to our methods and contributions is given in Section 4.4 for the verifi-
cation of population protocols and in Section 7.7 for the simulation of chemical reaction
networks.

2To clarify, memoization (without ’r’) is an optimization technique that stores results to avoid redundant
calculations, while memorization (with ’r’) refers to the process of committing something to memory.

2



1 Introduction

The research on the analysis of chemical reaction networks began in 1931 with Kol-
mogorov’s description of the time evolution of a stochastic jump process through differ-
ential equations [Kol31]. This description, known today as the chemical master equa-
tion [Gil92], became the foundation for the first stochastic simulation algorithm for
chemical reaction networks, developed by Doob in 1945 [Doo45]. In 1950, the approach
was implemented on a computer [Ken50], enabling the study of outbreaks in epidemics
three years later [Bar53]. In 1977, Gillespie popularized the stochastic simulation algo-
rithm (SSA), which serves as the basis for most simulation-based analysis approaches
[Gil77]. An alternative approach is the numerical analysis of chemical reaction net-
works, which directly computes transient distributions. The commonly used technique
with the name uniformization transforms the continuous-time model into a discrete-time
model with a uniform time step [Gra77; GM84]. In order to handle the (potentially infi-
nite) state space resulting from this transformation, various state-reduction techniques
have been explored [MK06; ZWC09; AAČ+21]. Similarly, abstraction-based methods
construct a smaller model while preserving the dynamical properties of the original
chemical reaction network [ČK19].

The research on population protocols was inspired by work in the early 2000s on sen-
sor networks [IGE00] and trust propagation [DF01]. In 2004, Angluin et al. introduced
the population protocol model in their seminal paper [AAD+04; AAD+06]. The con-
nection to chemical reaction networks was only discovered a few years later [AAE07;
AR09]. Population protocols are closely related to several other theoretical models stud-
ied in computer science, including Petri nets [DA94], multiset rewriting systems [BT05],
and vector addition systems [KM69]. Consequently, results from these related models
can be applied to research on population protocols. For example, Esparza et al. establish
a connection between population protocols and Petri nets, demonstrating the decid-
ability of reachability and correctness problems for population protocols [EGL+17]. A
fundamental result characterizing the expressive power of population protocols shows
that they can precisely compute the class of formulas in Presburger arithmetic, the
first-order theory of addition [AAE+07]. Other research investigates the speed of com-
putation [AAE08; AGV15], such as studies on fast leader election [DS18], and space
complexity [BEJ18a], including the design of highly succinct threshold protocols where
agents have few states but can count to large numbers [CE21]. Numerous modifications
of the population protocol model have been explored, such as protocols with faulty in-
teractions [DFI+19] and protocols with leaders [AAE08; DFI+19]. Additional variations
alter the capabilities of agents by incorporating a global clock [Asp17; MS15a; GS20],
introducing identifiers [GR07; MCS11], or allowing the number of states to depend
on the number of agents [AAE+17; GS20]. Similarly, other publications modify the
communication between agents, for example, by adding broadcast transitions [BEJ19],
by limiting interactions to observation [EGM+18], or by introducing different network
topologies [BBB13; CFQ+12].

3



1 Introduction

1.2 Summary of Contributions

We give a brief and high-level overview of the main contributions. Additional details
can be found in Chapters 3 to 5.

Verification of Population Protocols. In [BEH+20], we present a sound and complete
method for the verification of population protocols that uses Presburger stage graphs.
Presburger stage graphs formally describe the computation of population protocols as
a series of stages that correspond to irreversible changes in the system state. As such,
they can act as a witness for liveness properties like correctness and can be checked
independently. Further, we show that if a population protocol is correct, then there is
a Presburger stage graph that proves this. Although this yields an algorithm for the
verification of arbitrary population protocols, it is not very efficient due to the high
theoretical complexity of the verification problem. Thus, we introduce an incomplete
but efficient procedure that constructs Presburger stage graphs that can verify many
population protocols from the literature. In [EHJ+20], we extend the tool Peregrine with
this new automatic verification procedure together with a visualization of the generated
stage graphs. This helps users to understand how a protocol works, how fast it is, and
why it is correct or incorrect.

Synthesis of Fast and Succinct Population Protocols. In [BEG+20], we present the
first synthesis procedure that results in succinct population protocols, i.e., protocols
with agents that have few states. Specifically, for a given Presburger formula φ we
produce a population protocol with agents that have poly(|φ|) states where |φ| is the
length of the formula with binary coefficients. In [CGH+22], we improve the result by
producing succinct population protocols that are also fast. Specifically, the expected
number of interactions required to reach a stable consensus in the resulting protocols is
O(n2) where n is the number of agents.

Approximate Simulation of Chemical Reaction Networks. In [HČK+22], we intro-
duce segmental simulation, a novel approximate simulation method for chemical reac-
tion networks based on memoization. It speeds up the generation of new simulations
by reusing small parts of previous simulations that are called segments. To ensure that
segmental simulations have the same behavior as the original systems, we leverage a
population-level abstraction that divides the state space into regions with similar lo-
cal behavior. This allows us to only reuse segments that start in the same region. In
addition to a discussion of the approximation error, we demonstrate the accuracy and
speedup of the approach using a series of benchmarks. For even more efficiency, we
show how to combine segmental simulation with other approximate simulation tech-
niques. To this end, we present a new hybrid simulation approach that automatically
classifies the speed of reactions. This allows us to approximate the effect of a large
number of fast reactions while preserving the stochastic fluctuations caused by slow re-
actions. We implemented our approaches in the easy-to-use tool SAQuaiA which helps

4



1 Introduction

to simulate and analyze chemical reaction networks and facilitates the comparison of
different approximate simulation techniques.

1.3 Publication Summary

We list the publications by the thesis author that we discuss in this publication-based
thesis. All papers are included in the appendix, preceded by a page that presents the
full citation, a short summary, and a description of the thesis author’s contributions.

Part I of the appendix contains three publications in which the author of this thesis is
the first author. In these publications, the thesis author contributed more than 50% of
the substantive findings:

A Michael Blondin, Javier Esparza, Martin Helfrich, Antonı́n Kučera and Philipp
J. Meyer. “Checking Qualitative Liveness Properties of Replicated Systems with
Stochastic Scheduling”.
CAV, 2020. [BEH+20]

B Javier Esparza, Martin Helfrich, Stefan Jaax and Philipp J. Meyer. “Peregrine 2.0:
Explaining Correctness of Population Protocols through Stage Graphs”.
ATVA, 2020. [EHJ+20]

C Martin Helfrich, Milan Češka, Jan Křetı́nský and Štefan Martiček. “Abstraction-
Based Segmental Simulation of Chemical Reaction Networks”.
CMSB, 2022. [HČK+22]

Note that only publications A and C are considered core publications, as they are full
publications, while B is a tool paper.

Part II of the appendix contains the following two publications in which the author of
this thesis is not the first author:

D Michael Blondin, Javier Esparza, Blaise Genest, Martin Helfrich and Stefan Jaax.
“Succinct Population Protocols for Presburger Arithmetic”.
STACS, 2020. [BEG+20]

E Philipp Czerner, Roland Guttenberg, Martin Helfrich and Javier Esparza. “Fast
and Succinct Population Protocols for Presburger Arithmetic”.
SAND, 2022. [CGH+22]

All five publications included in the dissertation are written in English and have been
published in peer-reviewed proceedings of internationally recognized conferences. Pub-
lications A and B are covered by Chapter 4, publication C is covered by Chapter 7, and
a high-level overview of publications D and E is presented in Chapter 5.
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1 Introduction

Other Publications

In addition to the included publications, the author has co-authored the following pa-
pers while working on this thesis. These papers have been published in peer-reviewed
conference proceedings and, while they are not part of the thesis, they are mentioned
here for the sake of completeness.

• Loris D’Antoni, Martin Helfrich, Jan Kretinsky, Emanuel Ramneantu and Maxi-
milian Weininger. “Automata Tutor v3”.
CAV, 2020. [DHK+20]

• Philipp Czerner, Roland Guttenberg, Martin Helfrich and Javier Esparza. “Deci-
sion Power of Weak Asynchronous Models of Distributed Computing”.
PODC, 2021. [CGH+21]

1.4 Outline of Thesis

Chapter 2 provides an overview of preliminary concepts and notations related to num-
bers, vectors, multisets, and Presburger arithmetic.

Chapter 3 focuses on the model of population protocols, presenting example protocols
to illustrate their workings. The verification of population protocols is covered in Chap-
ter 4, where the results from [BEH+20; EHJ+20] are presented. Furthermore, Chapter 5
provides a concise and high-level overview of our complementary research concerning
the synthesis of fast and succinct population protocols in [BEG+20; CGH+22].

In Chapter 6, we introduce the chemical reaction network model. Building on this,
Chapter 7 delves into the results obtained from [HČK+22] for the approximate simula-
tion of chemical reaction networks.
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2 Preliminaries

B
def
= {true, false} are the Boolean values, N

def
= {0, 1, . . . } are the natural numbers, Z

def
=

{. . . ,−1, 0, 1, . . . } are the integers, and R is the set of real numbers.

Vectors. Let E be a finite set. A vector V over E is a mapping V : E 7→ R. The set of
all vectors over E is RE. Addition, subtraction, and scalar multiplication of vectors are
defined componentwise, i.e., (M + N)(e) def

= M(e) + N(e), (M− N)(e) def
= M(e)− N(e),

and (c · M)(e) def
= c · M(e) for M, N ∈ ZE and c ∈ Z. The dot product of two vectors

M, N ∈ ZE is defined as M · N def
= ∑e∈E M(e) + N(e). Comparison of vectors is defined

as a partial order with M ≥ N def⇐⇒ M(e) ≥ N(e) for every e ∈ E.

Multisets. Let E be a finite set. A multiset M over E is a vector M : E 7→ N and the
set of all multisets over E is NE. M(e) is the number of occurrences of e in multiset M.
The support and size of a multiset M are supp(M)

def
= {e ∈ E | M(e) > 0} and |M| def

=

∑e∈E M(e), respectively. E⟨k⟩ is the set of all multisets over E of size k. In contrast to
vector subtraction (−), we define multiset difference (⊖) as (M⊖N)(e) def

= max(M(e)−
N(e), 0) for M, N ∈NE. We often use a set-like notation to describe multisets, e.g., M =
Ha, a, bI, or equivalently M = H2 · a, bI, is the multiset with M(a) = 2, M(b) = 1 and
M(x) = 0 for all x ̸∈ {a, b}.

Presburger arithmetic. Let X be a set of variables. The set of Presburger formulas over
X is the result of closing atomic formulas, as defined in the following sentence, under
Boolean operations and first-order existential quantification. Atomic formulas are of the
form ∑k

i=1 aixi ∼ b, where ai and b are integers, xi are variables, and ∼ is either < or
≡m, the latter denoting the congruence modulo m for any m ≥ 2. Formulas over X are
interpreted on NX, i.e., variables take values in the natural numbers. Let φ be a formula
of Presburger arithmetic over X. If the multiset E ∈NX satisfies the Presburger formula
φ over X, we write φ(M) = true or just φ(M), otherwise φ(M) = false. For example,
the Presburger formula φ = (2x + 3y < 10) ∧ (x + y ≡2 0) is satisfied for multiset
M = H3 · x, yI because 2 · 3 + 3 · 1 = 9 < 10 and 3 + 1 ≡2 0, i.e., we write φ(M). Let JφK
be the set of all multisets satisfying φ. A set of multisets C ⊆ NX is a Presburger set if
C = JφK for some formula φ. We say a set of multisets C ⊆ NX satisfies a Presburger
formula φ over X if C ⊆ JφK. The size |φ| of a Presburger formula φ is the length of
its string representation with coefficients written in binary. For a survey on Presburger
arithmetic, see [Haa18].
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3 Population Protocols

In this section, we will introduce the population protocol model. We begin with a high-
level explanation to give a first intuition and then give a formal introduction. For a
survey on population protocols, we refer to [AR09].

In 2004 Angluin et al. introduced population protocols as a model of distributed com-
putation by a collection of agents [AAD+04; AAD+06]. Each agent is in one of finitely
many states but is otherwise indistinguishable from other agents. As such, the global
state of the population protocol, called its configuration, is fully determined by the
number of agents in each state. The agents compute the answer to a question about
their initial population by interacting in pairs until they reach a stable consensus. In
every discrete time step, a fair scheduler picks the next pair of agents to interact, re-
sulting in an infinite sequence of configurations. Depending on its current state, each
agent has an opinion on whether the answer is true or false. If all agents have the same
opinion, there is a consensus. If, additionally, all possible future configurations have
the same consensus, there is a stable consensus. We say that a protocol computes a
question if any fair execution reaches a stable consensus with the right opinion. Our
running example will be the majority protocol:

Example 1 (Majority Protocol). The majority protocol has four states Y, N, y, and n. Agents
start in one of the two initial states Y and N with the idea that agents in Y vote for “yes” and
agents in N vote for “no”. If the system starts with three agents in Y and two agents in N, we
say that its initial configuration is the multiset C0 = HY, Y, Y, N, NI. The protocol has four
transitions that change the state of agents:

t1 : Y, N 7→ y, n t2 : Y, n 7→ Y, y t3 : N, y 7→ N, n t4 : y, n 7→ y, y

Intuitively, transition t1 tells us that if an agent in Y and an agent in N interact, they can
change their state: one agent to y and the other agent to n. In C0 the transition t1 leads to
HY, Y, y, N, nI. See Figure 3.1 for a visualization of the states and transitions as a Petri net.

The majority protocol computes the answer to the Presburger formula Y ≥ N, i.e., it com-
putes whether there are at least as many votes for “yes” as for “no” in the initial configuration.
The current opinion of an agent is “yes” if its state is Y or y, and “no” otherwise. Because in
the initial configuration C0 there are indeed at least as many agents in Y as in N, every agent
will eventually have the opinion “yes” forever. Otherwise, every agent would eventually have
the opinion “no” forever.
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3 Population Protocols

Y t1 N

t2 t3

y nt4

Figure 3.1: Petri net visualization of majority population protocol defined in Example 1. The
places (circles) of the Petri net represent states, and the transitions of the Petri net
(squares) correspond to the transitions in the protocol.

3.1 Formal Definition with Examples

A population protocol is a tuple P = (Q, T, I, O), where

• Q is a finite set of states,

• T ⊆ Q⟨2⟩ ×Q⟨2⟩ is a set of transitions containing the set {(x, x) | x ∈ Q⟨2⟩} of silent
transitions,1

• I ⊆ Q is the set of initial states, and

• O : Q 7→ B is the output function.

Example 2 (Formal Definition of Majority Protocol). The majority protocol is the tuple
(Q, T, I, O) with

Q
def
= {Y, N, y, n} I

def
= {Y, N} O(s) = 1

def⇐⇒ s ∈ {Y, y}

and T contains the four non-silent transitions:

t1 : Y, N 7→ y, n t2 : Y, n 7→ Y, y t3 : N, y 7→ N, n t4 : y, n 7→ y, y

Configurations and Transitions. A configuration is a multiset of states C ∈ NQ with
|C| ≥ 2, where C(q) is the number of agents in state q ∈ Q. Because agents are indistin-
guishable, the configuration fully determines the global state of the system. If C(q) = 0,
then state q is empty in C. For a transition t = (Hq1, q2I, Hq3, q4I) we usually write
t : q1, q2 7→ q3, q4. The preset, postset, and effect are defined as •t def

= Hq1, q2I, t• def
= Hq3, q4I,

and ∆(t) def
= t• − •t, respectively. A transition t is enabled in C if C ≥ •t and disabled oth-

erwise. If t is enabled in C, it can occur leading to configuration C′ = C + ∆(t) which

1When giving population protocols we usually omit silent transitions but implicitly assume they are
present.
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3 Population Protocols

we write as C t−→ C′. Intuitively, when q1, q2 7→ q3, q4 occurs, then two agents in states
q1 and q2 interact and change their state to q3 and q4. Note that transitions cannot create
or destroy agents.

Reachability, Executions, and Fairness. Let C and C′ be configurations. We say C
can reach C′ in one step, written as C −→ C′, if C t−→ C′ for some transition t. Further,
C can reach C′ via a transition sequence w = t0, t1, . . . , tn, written as C w−→ C′, if there are

configurations C0, C1, C2, . . . , Cn such that C = C0 and Cn = C′ and C0
t0−→ C1

t1−→ . . .
tn−1−−→

Cn. Finally, we say C can reach C′, written as C ∗−→ C′, if there is a transition sequence w
such that C w−→ C′. For a set of configurations C , let post∗(C )

def
= {C′ ∈NQ | C ∈ C , C ∗−→

C′} denote the set of reachable configurations. An execution starting in configuration C is
an infinite sequence of configurations π = C0C1C2 . . . such that C = C0 and Ci −→ Ci+1
for every i. An execution is fair if every configuration that is reachable infinitely often
is visited infinitely often. More details on fairness are given in Section 3.3.

Example 3 (Reachability Graph for Majority Protocol). For some fixed configuration, the
number of reachable configurations is always finite because the number of agents stays constant.
Thus, it is possible to visualize the set of reachable configurations as a finite reachability graph.
The reachability graph for the configuration C = HY, Y, Y, N, NI in the majority protocol is
shown in Figure 3.2. Note that every fair execution starting at C will eventually visit C′ =
HY, y, y, y, yI as this configuration is always reachable. As only silent transitions are enabled
in C′, the system will remain in C′ forever. Without fairness, an execution could, for example,
change between HY, Y, y, N, nI and HY, Y, y, y, NI forever.

HY, Y, Y, N, NI

HY, Y, y, N, nIHY, Y, y, y, NI HY, Y, N, n, nI

HY, y, y, n, nIHY, y, y, y, nI HY, y, n, n, nIHY, y, y, y, yI

t1

t2 / t4

t3 t3

t2
t1t1 t1

t2 / t4t2 / t4t2 / t4

Figure 3.2: Finite reachability graph of configuration HY, Y, Y, N, NI in the majority protocol.
All loops corresponding to silent transitions were omitted. Please note that there are
infinitely many configurations because the number of initial agents is unbounded.
For each of these configurations there is such a bounded reachability graph.

LTL. We now lift the notion of Presburger formulas as defined in Section 2 to linear
temporal logic (LTL). Formulas of LTL over Presburger atomic propositions are given
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3 Population Protocols

by the grammar

ψ := φ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ

where φ is a Presburger formula. We use the standard semantics:

(¬ψ)(C) ⇔ ¬ψ(C)
(ψ1 ∧ ψ2)(C) ⇔ ψ1(C) ∧ ψ2(C)
(ψ1 ∨ ψ2)(C) ⇔ ψ1(C) ∨ ψ2(C)
(Xψ)(C) ⇔ ∀C′ : C −→ C′ ⇒ ψ(C′)
(ψ1 U ψ2)(C) ⇔ ∀ fair C0C1 . . . with C0 = C : ∃i > 0 :

ψ2(Ci) ∧
∧

j<i

ψ1(Cj)

Intuitively, X stands for “next” as the following property holds in every successor con-
figuration, and U stands for “until” because in fair executions the first property holds
up to a point where the second property holds. Furthermore, we define the abbrevia-
tions Fψ

def
= true U ψ and Gψ

def
= ¬F¬ψ. Intuitively, F stands for “finally“ and forces that

the following property holds at some point in the future, whereas G stands for “glob-
ally” and holds if the property holds now and in every future configuration. Like for
Presburger formulas, JψK is the set of configurations that satisfy ψ. A set of configura-
tions C ⊆ NQ satisfies ψ if C ⊆ JψK. A population protocol P satisfies ψ if NQ = JψK,
i.e., if every configuration satisfies the property.

Computation. An initial configuration is a configuration that satisfies the Presburger
formula φinit

def
=

∧
q∈Q\I q=0, i.e., a configuration where non-initial states are empty.2

A configuration C has consensus b ∈ B if it satisfies the formula φb
cons

def
=

∧
q∈Q(q >

0 =⇒ O(q) = b), i.e., if every agent has output b. A configuration is a stable consensus
with output b if it satisfies Gφb

cons, i.e., if any reachable configuration has consensus b.
A population protocol computes a Presburger formula φ : NI 7→ B if any fair execu-
tion starting an initial configuration C0 eventually stabilizes to a consensus with output
φ(C0), i.e., if the protocol satisfies the LTL formula

(φinit ∧ φ =⇒ FGφtrue
cons) ∧ (φinit ∧ ¬φ =⇒ FGφ

false
cons)

It is known that population protocols compute precisely the formulas expressible in
Presburger arithmetic [AAE+07]: Every formula that is computed by a population pro-
tocol is Presburger, and for every Presburger formula there is a population protocol that
computes it.

2Note that population protocols are traditionally defined with an additional input mapping that maps
some input alphabet to initial states. Our definition is equivalent, as one can always introduce states
for each input letter and perform the mapping via auxiliary transitions.
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3 Population Protocols

Example 4 (Computation for Majority Protocol). For the majority protocol, the formulas
for initial configurations and configurations with consensus are:

φinit = y = 0∧ n = 0
φtrue

cons = N = 0∧ n = 0

φfalse
cons = Y = 0∧ y = 0

The majority protocol computes the formula Y ≥ N, i.e., it satisfies:

(φinit ∧Y ≥ N =⇒ FGφtrue
cons) ∧ (φinit ∧Y < N =⇒ FGφfalse

cons)

In other words: The majority protocol starts with all agents in Y or N. If there was an initial
majority for Y (or a tie), then all agents eventually stabilize to output true. Otherwise, they
eventually stabilize to output false.

3.2 More Examples

Example 5 (Incorrect Majority Protocol). If we remove the transition t4 of the majority pro-
tocol of Example 1, the resulting population protocol no longer computes Y ≥ N.

t1 : Y, N 7→ y, n t2 : Y, n 7→ Y, y t3 : N, y 7→ N, n ((((((((hhhhhhhht4 : y, n 7→ y, y

In fact, if there is a tie, the protocol does not even reach a consensus. The smallest example is the

execution HY, NI t1−→ Hy, nI −→ Hy, nI −→ · · · . Note that this execution is fair as (i) Hy, nI is the
only configuration that is visited infinitely, and (ii) it enables only silent transitions. Because of
this, the protocol does not compute any formula.

Example 6 (Approximate Majority). Consider the population protocol (Q, T, I, O) with

Q
def
= {Y, N} I

def
= Q O(s)

def
= (s = Y)

and two non-silent transitions:

tY : Y, N 7→ Y, Y tN : Y, N 7→ N, N

This protocol also does not compute Y ≥ N. Consider that any configuration without consensus
can be stabilized to either output. Using tY a single agent in Y can change the state of every
agent in N to Y. Similarly, using tN a single agent in N can change the state of every agent
in Y to N. Thus, the protocol does not compute any formula because the output is not fully
determined by the initial configuration. However, the protocol always stabilizes, i.e., it satisfies
F(Gφtrue

cons ∨ Gφfalse
cons). Further, it can be shown that if there is a majority, the corresponding

output is more likely under stochastic scheduling (see Section 3.3).

Example 7 (Flock-of-Birds Protocol). Assume that we have a flock with an unknown number
of birds. Each bird has a sensor that detects if it is “sick” (q1) or “healthy” (q0). Now we will
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give a family of population protocols that computes if the number of sick birds is at least c for
some parameter c ≥ 1. Note that the example in the introduction of this thesis is the protocol
for c = 5 (see Chapter 1).

The flock-of-birds protocol for c ≥ 1 is the protocol (Q, T, I, O) with:

Q
def
= {q0, q1, q2, . . . , qc} I

def
= {q0, q1} O(s)

def
= (s = qc)

T
def
= {qx, qy 7→ qx+y, q0 | x + y < c} ∪ {qx, qy 7→ qc, qc | x + y ≥ c}

The protocol computes the formula q1 ≥ c. Intuitively, an agent in state qx knows that x agents
are sick. When two agents in state qx and qy interact, they together know that x + y birds are
sick. If x + y ≥ c they know that there are indeed at least c sick birds and both go to state qc.
Otherwise, one of the birds collects all the information by changing its state to qx+y while the
other agent pretends that everyone is healthy.

3.3 Other Fairness Notions and Stochastic Scheduling

Intuitively, the next interaction is chosen by a scheduler. The scheduler is free to choose
any interaction, even in an adversarial manner, as long as the resulting sequence of
interactions is considered fair. However, there are multiple different fairness notions,
that we will explain in this section.

Global Fairness. Recall that we use a global fairness assumption in the definition of
population protocols. An execution is fair if all configurations that can be reached in-
finitely often are reached infinitely often. There is an equivalent alternative definition
of global fairness: An execution is one-step fair if all configurations that can be reached
infinitely often in one step are reached infinitely often. While the one-step fairness def-
inition may be more intuitively understandable, one typically uses the stronger global
fairness to simplify proofs.

Local Fairness. In some publications on population protocols, global fairness is re-
placed by a local fairness notion [SLD+09; CDF+11]. An execution is locally fair if all
transitions that are enabled infinitely often occur infinitely often. Note that local fair-
ness and global fairness are incomparable, i.e., there are executions that are globally fair
but not locally fair (see Figure 3.3) and vice versa (see Figure 3.4).

Stochastic Scheduling. Often, the fairness assumption is replaced by a stochastic
scheduler that picks the next pair of interacting agents and the transition they per-
form uniformly at random (e.g., see [AAE08] or [BEK18]). This closely corresponds to
the notion that agents are passively mobile sensors that move randomly in space and
interact with other sensors when they are in close proximity (see Figure 3.5). It is easy
to show that a stochastic scheduler is both (i) locally fair and (ii) globally fair: (i) If a
transition is enabled infinitely often, it will almost surely occur infinitely often because
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3 Population Protocols

Q def
= {a, b, c}

T def
= {tab : a, a 7→ b, b

tbc : b, b 7→ c, c
tca : c, c 7→ a, a
tac : a, a 7→ c, c}

Ha, aI

Hb, bIHc, cI

tab

tbc

tca

tac

Figure 3.3: Global fairness does not imply local fairness. An execution of the given population
protocol is drawn as a solid orange cycle within a reachability graph. It is globally
fair as it visits all reachable configurations infinitely often. However, it is not locally
fair because the transition tac is enabled infinitely often in Ha, aI but never occurs.

Q def
= {Y, N}

T def
= {tY : Y, N 7→ Y, Y

tN : Y, N 7→ N, N}

H3 ·YI H2 ·Y, NI HY, 2 · NI H3 · NI

tN

tY

tN

tY

tN

tY

Figure 3.4: Local fairness does not imply global fairness. An execution of the approximate ma-
jority protocol of Example 6 is drawn as a solid orange cycle within a reachability
graph. It is locally fair as all transitions occur infinitely often. However, it is not
globally fair because H3 ·YI is reachable infinitely often but never reached.
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3 Population Protocols

Figure 3.5: Spatial simulation of majority protocol (see Example 1) in tool Peregrine (see Sec-
tion 4.3). Agents are drawn as molecules that randomly move in space. When two
molecules collide, they change their state.

the transition is chosen with non-zero probability. (ii) If a configuration is infinitely
often reachable in one step, it will almost surely be visited infinitely often because the
corresponding transition is chosen with non-zero probability.

Speed. In the stochastic setting, it is possible to define the notion of time as the num-
ber of interactions that occur. The speed of a population protocol is then the expected
number of interactions until the protocol stabilizes to the correct output. For example,
the speed of the majority protocol of Example 1 is 2O(n log n), where n is the number of
agents. The flock-of-birds protocol of Example 7 is much faster and needs only O(n2)
interactions to stabilize.
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4 Verification of Population Protocols

When creating new population protocols or adapting existing ones, it is easy to make
mistakes that result in incorrect protocols.1 Consequently, it is very important to verify
that a given protocol works as intended. While running simulations can increase confi-
dence, this kind of testing does not guarantee correctness. The only way to be sure is to
generate a proof for the protocol’s correctness. As doing so by hand is time-consuming
and error-prone, we investigate the automatic verification of population protocols.

Definition 1 (Correctness Problem).
Given: A population protocol P and a formula φ.
Decide: Does P compute φ?

Note that for a fixed input, one can easily check if a population protocol computes the
correct output by analyzing the finite reachability graph (see Example 3). However,
the correctness problem is a parameterized verification problem as population protocols
must be correct for all the infinitely many initial configurations. Although the correctness
problem is still decidable, it is as hard as the reachability problem for vector addition
systems [EGL+17], which is Ackermann-complete [CO22; Ler22].

This chapter has three parts: In Section 4.1, we introduce formal objects called stage
graphs and show that they are a sound and complete technique for the verification of
population protocols. Next, we give a practical algorithm for the efficient verification
of population protocols in Section 4.2. Finally, in Section 4.3, we present an easy-to-use
tool for the verification of population protocols, which implements this algorithm.

4.1 Theory of Stage Graphs

We will motivate our approach by analyzing the following correctness proof of the
majority protocol of Example 1 that computes the formula Y ≥ N and has the four
transitions:

t1 : Y, N 7→ y, n t2 : Y, n 7→ Y, y t3 : N, y 7→ N, n t4 : y, n 7→ y, y

Example 8 (Correctness Proof for Majority Protocol). Agents in initial states (Y and N) are
called active. Notice that no transition increases the number of active agents and the transition
t1 reduces their number. Thus, any fair execution will eventually reduce the number of active
agents until t1 becomes disabled, Form this point on, it holds that either Y = 0 or N = 0.
Then there are two cases: (a) In case the formula was false (i.e., Y < N), there is no agent in

1For an example see [AGV15] where a typo in Figure 1 resulted in an incorrect protocol.
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Y but at least one agent in N. From any reachable configuration, this agent can convert all y
into n using transition t3. Thus, any fair execution will eventually reach a configuration with
consensus false. This is a stable consensus, as all non-silent transitions are disabled. (b) In cases
where the formula was true (i.e., Y ≥ N), there is no agent in N. Thus, the number of agents
in n must decrease with every non-silent transition. Further, there must be at least one agent in
y because the last occurrence of t1 created one. Thus, any fair execution will eventually reach a
configuration with consensus true. This is a stable consensus, as all non-silent transitions are
disabled.

Notice that the correctness proof has three phases. In the first phase, the protocol can
use all transitions and the number of reachable configurations is large. In the second
phase, the transition t1 can never be used again, effectively limiting the number of
reachable configurations. Finally, in the third phase, only silent transitions can occur,
i.e., the number of reachable configurations is one. Indeed, any correct population pro-
tocol stabilizes to the correct output at which point many configurations, such as those
with no or incorrect output, remain unreachable. This hints at a fundamental property
of executions in correct population protocols: they get trapped in increasingly con-
strained sets of configurations. We formalize this idea by introducing stage graphs that
can act as certificates for the correctness of population protocols.

4.1.1 Stable Termination

Stage graphs verify not only correctness but a more general class of stable termination
properties. A stable termination property for a population protocol with states Q is
a pair Π = (φpre, Φpost) of a precondition φpre and a set of postconditions Φpost =

{φ1
post, . . . , φk

post} where φpre, φ1
post, . . . , φk

post are Presburger formulas over Q. When
there is a single postcondition (i.e., k = 1), we also write Π = (φpre, φpost). The pair
Π induces the LTL formula:

φpre =⇒ F
∨

0≤i≤n

Gφi
post

In words: If the precondition holds, then eventually some postcondition holds forever.

Definition 2 (Stable Termination Problem).
Given: A population protocol P and a stable termination property Π.
Decide: Does P satisfy Π?

Recall the definition of computation for population protocols:

(φinit ∧ φ =⇒ FGφtrue
cons) ∧ (φinit ∧ ¬φ =⇒ FGφ

false
cons)

As we can see, a protocol P computes a formula if and only if it satisfies the two stable
termination properties Πtrue = (φinit ∧ φ, φtrue

cons) and Πfalse = (φinit ∧ ¬φ, φ
false
cons).

Theorem 1. The correctness problem is polynomially reducible to the stable termination prob-
lem.
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4.1.2 Stage Graphs

To introduce stage graphs, we need the following definitions:

Definition 3 (Inductive Set, Leads to, Certificate).

• A set of configurations is inductive if C ∈ C and C −→ C′ implies C′ ∈ C .

• When C , C ′ are sets of configurations, we say that C leads to C ′, denoted as C ⇝ C ′,
if every fair run starting in C eventually visits a configuration of C ′.

• A certificate for C ⇝ C ′ is a function f : C 7→ N such that for every configuration
C ∈ C \ C ′ there is a configuration C′ with C ∗−→ C′ and f (C) > f (C′).

We will now argue that we can use a certificate f to prove that an inductive set C leads
to another set C ′. Assume there is a fair execution π that does not visit C ′. As the
number of reachable configurations is finite, but executions are infinite, π has configu-
rations that are visited infinitely often. Let C be a configuration with minimal certificate
value among the infinitely visited configurations. As C is inductive, it must hold that
C ∈ C \ C ′. Due to the certificate f , there is a configuration C′ that is reachable from
C with f (C) > f (C′). As π is fair, it must also visit C′ infinitely often. However, this
implies that C was not the configuration with the lowest certificate value among all
configurations that are visited infinitely often, contradicting our initial assumption.

Proposition 1. If there is a certificate for C ⇝ C ′ and C is inductive, then C ⇝ C ′.

Now we can define stage graphs:

Definition 4 (Stage Graph). A stage graph for stable termination property Π is an acyclic
graph. Its nodes are sets of configurations, called stages. A stage is terminal if is has no
successors. Otherwise, it is non-terminal. A stage graph satisfies the following four properties:

(1) Every stage is inductive.

(2) Every configuration that satisfies the precondition φpre is in some stage.

(3) If S is a non-terminal stage with successors S1, . . . ,Sn, then there exists a certificate for
S ⇝ (S1 ∪ · · · ∪ Sn).

(4) If S is a terminal stage, then S ⊆ Jφi
postK for some i.

We will now argue that a stage graph for stable termination property Π proves that the
protocol satisfies Π. A fair execution that starts in a configuration satisfying the precon-
dition φpre also starts in a stage by property (2). As long as the fair execution is not in
a terminal stage, it must eventually enter a successor because of the certificate in prop-
erty (3) and Proposition 1. This continues until the execution enters a terminal stage
that it can never leave because of property (1). From this point on, every configuration
satisfies postcondition φi

post by property (4).
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4 Verification of Population Protocols

Theorem 2. If a population protocol P has a stage graph for a stable termination property Π,
then P satisfies Π.

Example 9 (Stage Graphs for Correctness of Majority Protocol). Figure 4.1 shows a pair
of stage graphs that verify the correctness of the majority protocol defined in Example 1. Certifi-
cates are written on the edges. Note that the stage graphs closely correspond to the correctness
proof given in Example 8. Often it is helpful to visualize stage graphs as Venn diagrams
[Ven80] where configurations are points on the plane and sets of configurations are regions. For
example, see Figure 4.2, which shows how the majority protocol becomes trapped in increasingly
constrained sets of configurations.

post∗(Jφinit ∧Y ≥ NK) S4

post∗(Jφinit ∧Y ≥ NK)
∩ JN = 0K S5

post∗(Jφinit ∧Y ≥ NK)
∩ JN = 0∧ n = 0K S6

post∗(Jφinit ∧Y < NK)S1

post∗(Jφinit ∧Y < NK)
∩ JY = 0KS2

post∗(Jφinit ∧Y < NK)
∩ JY = 0∧ y = 0KS3

Y+N

n

Y+N

y

Figure 4.1: Stage graphs verifying the correctness of the majority protocol defined in Example 1.
The left stage graph verifies that the protocol stabilizes to false if there was a majority
for N in the initial configuration, and the right stage graph verifies the other case.
See Figure 4.2 for a Venn-diagram visualization of the same stage graphs.

post∗(Jφinit ∧Y ≥ NK)
certificate: Y+N

N = 0
certificate: n

n = 0

post∗(Jφinit ∧Y < NK)
certificate: Y+N

Y = 0
certificate: y

y = 0

Figure 4.2: Venn-diagram visualization of stage graphs in Figure 4.1 highlighting that the ma-
jority protocol becomes trapped in increasingly constrained sets of configurations.

Stage Graphs Require Global Fairness. Stage graphs verify stable termination under
the assumption of global fairness. If we use local fairness instead, a certificate does not
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guarantee that executions eventually enter a successor. An example for this is given in
Figure 4.3.

Q def
= {A, B,⊥}

T def
= {tA : A, B 7→ A, A

tB : A, B 7→ B, B
t⊥ : A, A 7→ ⊥,⊥}

HA, AI HA, BI HB, BI

H⊥,⊥I S ′ S

tB

tA

tB

tAt⊥

Figure 4.3: Certificates require global fairness. Consider the following two stages of the pop-
ulation protocol on the left: S = {HA, AI, HA, BI, HB, BI, H⊥,⊥I} and its successor
S ′ = {H⊥,⊥I}. A certificate for S ⇝ S ′ is f (C) def

= C(A). As configuration H⊥,⊥I
is always reachable, a globally fair execution cannot avoid it forever. However, a lo-
cally fair execution, such as the one drawn as orange cycle in the reachability graph
on the right, can. This execution is locally fair because only tA and tB are enabled
infinitely often and both are used infinitely often.

Stage Graphs are Sound and Complete

So far, we argued that the existence of a stage graph can certify a stable termina-
tion property. In addition, we can also show that if some stable termination property
Π = (φpre, Φpost) with Φpost = {φ1

post, . . . , φk
post} holds, then there is always a stage

graph that certifies this fact. Consider a stage graph with k + 1 stages: one initial stage
Sinit

def
= post∗(JφpreK) containing all configurations reachable from configurations satis-

fying the precondition, and k terminal successor stages Si
def
= JGφi

postK containing all
configurations that satisfy postcondition φpost forever (see Figure 4.4).

post∗(JφpreK)

JGφi
postKJGφ1

postK . . . JGφk
postK. . .

¬Gφ1
post ∧ · · · ∧ ¬Gφk

post

Figure 4.4: Stage graph constructed to prove Theorem 3. If a protocol satisfies the stable ter-
mination property Π = (φpre, Φpost) with Φpost = {φ1

post, . . . , φk
post}, then the given

graph is a stage graph for Π.
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Properties (1), (2), and (4) of stage graphs hold by definition. Since P satisfies Π,
every fair execution starting in a configuration satisfying the precondition eventually
enters a terminal stage, i.e., Sinit ⇝ (S1 ∪ · · · ∪ Sk). Thus, the function f (C) def

= C ∈
(S1 ∪ · · · ∪ Sk) is a certificate for property (3). We conclude:

Theorem 3. If a population protocol P satisfies a stable termination property Π, then P has a
stage graph for Π.

By combining Theorems 2 and 3, we know that stage graphs are a sound and complete
method for proving stable termination.

Theorem 4. A population protocol P satisfies a stable termination property Π if and only if it
has a stage graph for Π.

4.1.3 Presburger Stage Graphs

Notice that the stages and certificates of stage graphs can be arbitrarily complicated.
Thus, Theorem 4 does not prove that the stable termination problem (and by exten-
sion the correctness problem) is decidable. However, we can strengthen the result by
only considering “simple” stage graphs where (i) stages and certificates are expressed by
Presburger formulas and (ii) certificate values can be reduced in a constant number of
interactions.

Definition 5 (Bounded Certificate). A bounded certificate for C ⇝ C ′ is a pair ( f , k) of a
function f : C 7→ N and bound k ∈ N, such that for every configuration C ∈ C \ C ′ there is
a transition sequence w = t0, t1, . . . , tj with j ≤ k such that C w−→ C′ and f (C) > f (C′).

Intuitively, a bounded certificate is easy to check because it guarantees that its value
can be reduced with a short transition sequence instead of an arbitrary sequence.

Definition 6 (Presburger Stage Graph). A Presburger stage graph is a stage graph such
that

• stages are Presburger sets, i.e., for every stage S there is a Presburger formula φ such that
C ∈ S ⇔ φ(C), and

• certificates are bounded and given as Presburger formulas, i.e., for every bounded certifi-
cate ( f , k) there is a Presburger formula φ such that f (C) = n⇔ φ(C, n).

Note that the stage graphs in Example 9 are Presburger stage graphs.

Presburger Stage Graphs are Sound and Complete

We will now argue that even with this limitation, stage graphs are still a sound and
complete technique for the verification of stable termination properties. It is easy to see
that a Presburger stage graph is still a stage graph, and thus Presburger stage graphs
are still sound. The proof for completeness first assumes that a population protocol P
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satisfies a stable termination property Π = (φpre, Φpost) with Φpost = {φ1
post, . . . , φk

post}.
The rest of the proof has two parts: (a) argue that there is a stage graph where all stages
are Presburger sets, and (b) argue that all certificates are Presburger certificates. Because
the second part is more technical and uses deep results from the theory of Petri nets,
we will focus on the first part.

The Presburger stage graph proving Π has k terminal stages (one for each postcondi-
tion) and one non-terminal stage. It is depicted in Figure 4.5. Additionally, Figure 4.6
shows a Venn diagram of the involved sets of configurations and highlights which of
the sets are Presburger.

I ′

B ∩ JGφi
postKB ∩ JGφ1

postK . . . B ∩ JGφk
postK. . .

Figure 4.5: Presburger stage graph constructed to prove completeness of Presburger stage
graphs for Theorem 5. If a protocol satisfies the stable termination property Π =
(φpre, Φpost) with Φpost = {φ1

post, . . . , φk
post}, then the given graph is a Presburger

stage graph for Π. The set I ′ is a Presburger overapproximation of post∗(JφpreK).
See Figure 4.6 for a Venn-diagram visualization of the involved sets of configura-
tions.

post∗(JφpreK)

I ′

BB

JφpreK

JGφ1
postK JGφ2

postK . . . JGφk
postK

S1 S2 . . . Sk

Figure 4.6: Venn-diagram visualization for sets of configurations involved in the Presburger
stage graph of Figure 4.5. Stages have solid borders while all other sets have
dashed borders. For Presburger sets, the borders consist of straight lines. For non-
Presburger sets, they are curved.
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Terminal Stages. We use the following idea for the terminal stages of the Presburger
stage graph: As the reachability graph of a population protocol is always finite, any
fair execution of the system will eventually enter one of the bottom strongly connected
components of the reachability graph. Intuitively, at this point the system is “maximally
trapped” as all reachable configurations remain reachable. Formally, we say that a con-
figuration is bottom if C ∗−→ D implies D ∗−→ C. Let B be the set of all bottom configu-
rations. The terminal stages of the Presburger stage graph will be Si

def
= B ∩ JGφi

postK
for all 1 ≤ i ≤ k. I.e., Si are the bottom configurations that continuously satisfy post-
condition i. To understand why the terminal stages are Presburger sets, we need the
following two results from [EGL+17]:

Proposition 2 (adapted from [EGL+17, Thm. 13]; original result in [ES69]). The mutual
reachability relation defined as C ∗←→ D

def⇐⇒ (C ∗−→ D ∧ D ∗−→ C) is Presburger definable.

Proposition 3 (adapted from [EGL+17, Prop. 14]). B is a Presburger set.

Note that reachability and mutual reachability coincide for bottom configurations. Thus,
we can give the following Presburger formula for C ∈ Si:

C ∈ B ∧ ∀D : C ∗←→ D =⇒ φi
post(D)

Intuitively, these are the bottom configurations that can reach only configurations that
satisfy postcondition i.

Non-Terminal Stages. Stage graph property (2) requires that the non-terminal stage
contains JφpreK. Ideally, we would like to use the stage I = post∗(JφpreK) just as in
the non-Presburger construction. Because any execution eventually enters B and the
stable termination property holds, we know I ⇝ (S1 ∪ · · · ∪ Sk). However, I is not
Presburger, and thus we use an inductive Presburger overapproximation I ′ ⊇ I as
non-terminal stage. If I ′ does not contain bottom configurations that are in no terminal
stage, then I ′ ⇝ (S1 ∪ · · · ∪ Sk) by the same reasoning. Such an overapproximation
exists because of the following result from [Ler12]:

Proposition 4 (weakened version of [Ler12, Lem. 9.1]). For Presburger sets of configura-
tions C , D ∈ NQ with post∗(C ) ∩D = ∅, there is an inductive Presburger set I ′ ⊇ C with
I ′ ∩D = ∅.

Intuitively, Proposition 4 tells us that if C cannot reach D , then there is a Presburger
“barrier” between the two sets. In our case, we use C

def
= JφpreK and D

def
= B \ (S1 ∪ · · · ∪

Sk). As C cannot reach D because the stable termination property holds, this yields the
needed non-terminal stage I ′ that contains JφpreK with I ′ ⇝ (S1 ∪ · · · ∪ Sk).

Theorem 5. A population protocol P satisfies a stable termination property Π if and only if it
has a Presburger stage graph for Π.
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4.1.4 Stable Termination is Decidable

Observe that we can check if a given graph is a Presburger stage graph by checking the
satisfiability of multiple Presburger formulas. For example, to check that a stage S is
inductive, we can show that there is no configuration C ∈ S that has an enabled tran-
sition t that leads out of the stage. This can be achieved by showing that the following
Presburger formula is unsatisfiable:

∃C ∈ S :
∨

t∈T

(C ≥ •t ∧ (C + ∆(t)) ̸∈ S)

Theorem 6. Deciding whether an acyclic graph of stages (given as Presburger formulas) and
certificates (given as Presburger functions) is a Presburger stage graph for a stable termination
property is polynomially reducible to the satisfiability problem of Presburger arithmetic.

It is known that the satisfiability problem of Presburger arithmetic is decidable [Pre29]
and has complexity between 2-NEXP and 2-EXPSPACE [Ber80]. Thus, we can semi-
decide the stable termination problem by enumerating all possible Presburger stage
graphs and checking if they prove the property.

To decide stable termination, we run a second search in parallel until we find a coun-
terexample for stable termination. It enumerates all configurations satisfying the pre-
condition, builds the finite reachability graph, and then checks for each bottom strongly
connected component that all configurations satisfy a common postcondition.

Theorem 7. The stable termination problem for population protocols is decidable.

Combined with Theorem 1, we get an alternative proof for the decidability of the cor-
rectness problem given in [EGL+17].

Corollary 7.1. The correctness problem for population protocols is decidable.
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4.2 Efficient Construction of Stage Graphs

Our goal is the automatic verification of stable termination properties. We could use
the procedure of the decidability result in Theorem 7 and simply enumerate Presburger
stage graphs until we find one that proves the property. However, this approach has
two major problems:

1. From a theoretical point of view, the Ackerman-hardness of the correctness prob-
lem2 implies that the smallest Presburger stage graph can be very large in terms
of the system’s size.

2. In practice, the enumeration of all candidates is infeasible even though most sys-
tems have reasonably small stage graphs with just 2-5 stages.

Therefore, we introduce an algorithm that automatically constructs a Presburger stage
graph using a series of heuristics. It makes use of a constraint solver for the existential
fragment of Presburger arithmetic to search for certain kinds of stage graphs where
stages correspond to the “death” of transitions.

Definition 7 (Death of Transitions).

• A transition t is dead in configuration C if it can never occur in any execution starting
at C, i.e., if C satisfies the formula Dead(t)

def
= G¬(C ≥ •t).

• A set of transitions U ⊆ T is dead in configuration C if all transitions are dead, i.e., if C
satisfies the formula Dead(U)

def
=

∧
t∈U Dead(t).

As before, this notion can be lifted to sets of configurations, e.g., the transitions U ⊆ T
are dead in a set of configurations C if C ⊆ JDead(U)K. As we limit our search for stage
graphs, our procedure may fail, but crucially, it works for most systems in the literature.

Stage Representation

Before we explain the efficient algorithm for constructing stage graphs, we will first
describe how the stages are defined and represented. For this, we need to introduce the
notion of upward closed sets.

Definition 8 (Upward Closed Set). Let C ⊆ NQ be a set of configurations. The upward
closure of a set of configurations C is ↑C

def
= {C ∈ NQ | C ≥ C′ for some C′ ∈ C }, i.e., the

configurations that are larger than (or equal to) at least one of the configurations in C . Special
cases are ↑{HI} = NQ and ↑∅ = ∅. We say C is upward closed if C = ↑C . The basis of
an upward closed set C is the minimal set of configurations inf(C ) such that ↑ inf(C ) = C ,
i.e., the basis contains exactly the minimal configurations of the upward closed set.

2The reachability problem for vector addition systems, which is Ackermann-complete [CO22; Ler22], can
be polynomially reduced to the correctness problem [EGL+17].
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Example 10. The set C
def
= J(A ≥ 1∧ B ≥ 2)∨C ≥ 1K is upward closed and C is the upward

closure of both D
def
= {HA, 2 · BI, HCI} and E

def
= {HA, 2 · BI, HCI, H2 · CI}. However, only D

is the basis of C as E contains the redundant configuration H2 · CI that is already part of the
upward closure because of HCI.

For the stage representation, we leverage the following property that emerges naturally
from the definitions of upward-closed sets and Dead(U):

Proposition 5. The set J¬Dead(U)K for a set of transitions U ⊆ T is upward-closed.

Intuitively, the set of configurations that can enable a transition, i.e., the configurations
where a transition is not dead, is upward-closed.

The stages produced by our algorithm have a specific form: Each stage is represented
by a pair (D, B) where D ⊆ T are the dead transitions of the stage and B ⊆ NQ is a
minimal basis of an upward closed set we use to exclude the configurations ↑B. Fur-
ther, we demand that all those configurations where D is not dead are excluded, i.e., we
force J¬Dead(U)K ⊆ ↑B. The configurations in stage (D, B) are PotReach(JφpreK)∩↑B,
where PotReach is an inductive Presburger overapproximation of the non-Presburger
post∗. More details about PotReach are given in Section 4.2.1. See Figure 4.7 for a Venn-
diagram visualization of the stage definition.

Example 11. To show the stable termination property Πtrue = (φinit ∧ Y ≥ N, N = 0 ∧ n =
0) for the majority voting protocol (see Example 1), all stages have the form PotReach(Jφinit ∧
Y ≥ NK) ∩ ↑B. Intuitively, they contain all those configurations that (i) are (potentially)
reachable from some initial configuration with majority for Y, and (ii) are not in the upward
closed set ↑B. In a stage with dead transitions D = {t1 : Y, N 7→ y, n}, we must exclude
at least those transitions where t1 is not dead. This can be achieved with basis B = {HY, NI}
as this excludes all configurations where t1 is enabled, and once t1 is disabled it cannot become
enabled again.

Algorithm

Our algorithm maintains a workset containing stages for which we still need to prove
stable termination. Initially, the workset contains only one stage covering all configu-
rations that satisfy the precondition, i.e., the stage (∅, ∅) where no transitions are dead
and no configurations are excluded. While the workset is not empty, the algorithm al-
ways removes a stage S with representation (D, B) and performs the following steps:

1. Check Stable Termination: Try to prove that the current stage is terminal, i.e., that
S ⊆ JGφi

postK for some i. If the stage is terminal, proceed with the next stage.

2. Improve Stage Representation: Try to find transitions that are already dead in all
configurations of the stage. If we find dead transitions, add them to D and update
B to exclude more configurations.

26



4 Verification of Population Protocols

post∗(JφpreK)

PotReach(JφpreK)

JφpreK

↑B

−
C1

J≥ C1K

C2

J≥ C2K

post∗(JφpreK)

PotReach(JφpreK)

JφpreK

↑B

=

C1

J≥ C1K

C2

J≥ C2K

Figure 4.7: Venn-diagram visualization of automatically constructed stages. For Presburger
sets, the borders consist of straight lines. For non-Presburger sets, they are curved.
The stage is the area with the solid yellow border and is the result of excluding the
upward-closed set ↑B from the set PotReach(JφpreK) where B = {C1, C2}.
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3. Search Eventually Dead Transitions: Try to find a certificate proving that some
non-empty set of transitions U ⊆ T \ D becomes dead in every fair execution
starting in S . If successful, add a single successor with dead transitions D∪U (and
updated basis) to the workset and proceed with the next stage.

4. Search Split: Try to split S into parts S1, . . . ,Sn such that S is completely covered
(i.e., S = (S1 ∪ · · · ∪ Sn)) and in every Si some additional transition ti ∈ T \ D
is dead. If successful, add all successors to the workset.3 Otherwise, the algorithm
fails.

The following sections give additional details: Section 4.2.1 explains the Presburger
overapproximation of reachability used in the stage definition. Section 4.2.2 shows
how to update the basis of a stage in order to exclude configurations that can enable
supposedly dead transitions. Section 4.2.3 explains how to check stable termination in
Step 1. Section 4.2.4 explains how to find already dead transitions in Step 2. Section 4.2.5
describes how to find transitions that eventually become dead and a corresponding
certificate in Step 3. Section 4.2.6 demonstrates how to split a stage in Step 4. Finally,
we explain how we use stage graphs to automatically analyze the speed of population
protocols in Section 4.2.7.

4.2.1 Potential Reachability

In this section, we will explain the inductive Presburger overapproximation PotReach
used in the stage definition. As reachability of a Presburger set is not Presburger, we use
an inductive Presburger overapproximation that was introduced in [BEJ+17; ELM+14].
It combines two techniques familiar from the theory of Petri nets: the flow equation (also
known as marking equation) that describes the commutative effect of all transitions as
well as constraints for traps and siphons.

Flow Equation. If a configuration C can reach a configuration C′, then there neces-
sarily is a finite sequence of transitions τ = t1t2t3 . . . tn that leads from C to C′. The
combined effect of τ must be the difference between C and C′, i.e., it holds that

C + ∑
t∈T
|τ|t · ∆(t) = C′

where |τ|t is the number of occurrences of transition t in τ. Thus, if C ∗−→ C′, then it is
always possible to find a multiset x ∈NT that is a solution for the flow equation:

C + ∑
t∈T

x(t) · ∆(t) = C′

Note that this is expressible as an existential Presburger formula and results in an in-
ductive overapproximation of reachability. Indeed, just because there is a solution of

3The certificate can be an arbitrary function like f (C)=0 because splitting is essentially a case distinction.
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the flow equation, it must not hold that C ∗−→ C′, as only the total effect of transitions is
taken into account. It can still be the case that no sequence of transitions with that total
effect is realizable. As an example, consider the population protocol with a single non-
silent transition A, C 7→ B, C. Clearly, configuration HAI cannot reach HBI, but there is
a solution for the flow equation.

Traps and Siphons. Because the flow equation on its own is not precise enough for
our use case, we combine it with constraints for traps and siphons. A set of states
R ⊆ Q is a U-trap if for every transition t ∈ U it holds that •t∩ R ̸= ∅ =⇒ t• ∩ R ̸= ∅.
In other words, every transition in U that consumes an agent in trap R produces an
agent in R. Effectively, this implies that non-empty traps stay non-empty if we only use
transitions in U. Conversely, a set of states R ⊆ Q is a U-siphon if for every transition
t ∈ U it holds that t• ∩ R ̸= ∅ =⇒ •t ∩ R ̸= ∅. In other words, every transition in U
that produces an agent in siphon R consumes an agent in R. Effectively, this implies that
empty U-siphons stay empty if we only use transitions in U. Note that by definition,
the union of two U-siphons is a U-siphon and the union of two U-traps is a U-trap.
Thus, every subset of states has a unique largest U-siphon and a unique largest U-trap.

Combination. Let x be the solution to the flow equation and let τ be some corre-
sponding transition sequence with |τ|t = x(t) for all t ∈ T. Clearly, τ uses only the
transitions U = {t ∈ T | x(t) > 0}. If τ leads from C to C′, then we know:

• Every empty U-siphon in C must still be empty in C′.

• Every empty U-trap in C′ must have been empty in C.

This allows us to show that some configurations are not reachable, even if there is a
solution for the flow equation.

Example 12 (Proving Unreachability using Siphons). In the population protocol of Fig-
ure 4.8, it is not possible to reach C′ = HB, C, DI from C = HA, C, EI. The agent in state A
must change to B, but this requires that there is already an agent in D. The only agent that can
change to D is the agent in E, but this requires that there is already an agent in B. Despite this
fact, there is a solution for the flow equation that uses both t1 and t3 once. (In fact, this is the
only solution.) It is possible to prove that C cannot reach C′ using a siphon: The set {B, D} is a
{t1, t3}-siphon that is initially empty in C but not empty in C′. Note that the usage of the flow
equation is necessary to prove unreachability: If we did not know that t2 cannot occur, then the
largest empty siphon in C is the empty set.

Example 13 (Proving Unreachability using Traps). In the population protocol of Figure 4.9
it is not possible to reach C′ = HB, C, EI from C = HA, D, EI. The agent in state A must change
to B, but this requires that there is still an agent in D. The only agent that can change to C is
the agent in D, but this requires that there is still an agent in A. Despite this fact, there is a
solution for the flow equation that fires both t1 and t2 once. (In fact, this is the only solution.) It
is possible to prove that C cannot reach C′ using a trap: The set {A, D} is a {t1, t2}-trap that is
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Q def
= {A, B, C, D, E}

T def
= {t1 : A, D 7→ B, D

t2 : A, C 7→ A, D
t3 : B, E 7→ B, D}

C def
= HA, C, EI

C′ def
= HB, C, DI

Siphon

A t1 B

t2 t3

C

D

E

A t1 B

t3

C

D

E

Flow

Ht1, t3I

Figure 4.8: Illustration of Example 4.8 showing how to prove that configuration C cannot reach
configuration C′. The population protocol is formally defined (left) and visualized
as a Petri net (middle). The two configurations are drawn using tokens of different
colors. When considering only the transitions that occur in the solution to the flow
equation, there is a siphon that is empty in C but non-empty in C′ (right).

Q def
= {A, B, C, D, E}

T def
= {t1 : A, D 7→ B, D

t2 : A, D 7→ A, C
t3 : B, D 7→ B, E}

C def
= HA, D, EI

C′ def
= HB, C, EI

Trap

A t1 B

t2 t3

C

D

E

A t1 B

t2

C

D

E

Flow

Ht1, t2I

Figure 4.9: Illustration of Example 4.9 showing how to prove that configuration C cannot reach
configuration C′. The population protocol is formally defined (left) and visualized
as Petri net (middle). The two configurations are drawn using tokens of different
colors. When considering only the transitions that occur in the solution to the flow
equation, there is a trap that is empty in C′ but non-empty at C (right).

empty in C′ but not empty in C. Note that the usage of the flow equation is necessary to prove
unreachability: If we did not know that t3 cannot occur, then the largest empty trap in C′ is the
empty set.

There is a simple greedy algorithm to compute the largest empty siphon in a con-
figuration [DE95, Example 4.5]): It starts with all empty states and then iteratively re-
moves states that violate the siphon constraint. Similarly, to instead compute the largest
non-empty trap, start with all non-empty states and then iteratively remove states that
violate the trap constraint. By symbolically executing this algorithm, our overapproxi-
mation of reachability enforces that any initially empty U-siphon stays empty and any
eventually empty U-trap starts empty.
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4.2.2 Updating Stage Representation

When we find a new transition that is dead, we need to exclude all configurations from
the stage where that transition is not dead. This is achieved by updating the basis of
the upward-closed set ↑B such that J¬Dead(U)K ⊆ ↑B using Algorithm 1. It is based
on the backward reachability algorithm that is commonly used for Petri nets (e.g., see
[ACJ+96; FS01]). Intuitively, the algorithm first excludes configurations that enable
dead transitions and then iteratively excludes configurations that can enable dead tran-
sitions via increasingly long transition sequences. We will now explain Algorithm 1
using an example.

Algorithm 1 Updating Stage Representation via Backward Reachability

Require: population protocol P = (Q, T, I, O), basis B0 of upward-closed set, dead
transitions D ⊆ T

Ensure: B is basis of upward closed set with ↑B ⊇ ↑B0 and J¬Dead(U)K ⊆ ↑B
1: B := B0
2: N := {•t | t ∈ D} ▷ Disable dead transitions
3: while N ̸= ∅ do
4: B := inf(B ∪N ) ▷ Keep minimal configurations of B ∪N
5: N := ∅
6: for each C ∈ B and t ∈ T \ D do
7: C′ := (C⊖ t•) + •t ▷ Apply reverse of t
8: if C′ ̸∈ ↑B then
9: N := N ∪ {C′} ▷ Exclude ↑{C′}

Example 14 (Backward Reachability Algorithm). Recall the transitions of the majority vot-
ing protocol:

t1 : Y, N 7→ y, n t2 : Y, n 7→ Y, y t3 : N, y 7→ N, n t4 : y, n 7→ y, y

Let S be a stage with dead transitions D = {t1} and basis B = {HY, NI}. We will now use
Algorithm 1 to compute the basis of a successor of S where the transitions t2 and t4 are dead
as well. In a first step, we exclude configurations where some dead transition is enabled. The
configurations that enable transition t are exactly the configurations in ↑{•t}. Thus, we add the
configurations HY, nI and Hy, nI to the basis (see Line 2). Whenever we add configurations to
the basis, we keep only the minimal configurations (see Line 4). Because both new configurations
are minimal, our new basis is {HY, NI, HY, nI, Hy, nI}.

Next, the algorithm makes sure that the resulting stage is inductive. Thus, it also excludes
configurations that can lead to already excluded configurations via a non-dead transition. The
smallest configuration leading to a configuration C′ larger than some minimal configuration C
via a transition t is (C⊖ t•) + •t. Thus, the algorithm adds (C⊖ t•) + •t for each minimal
configuration C ∈ B and non-dead transition t ∈ T \ D to the basis (see Line 9).4 This is re-
peated until the basis does not change anymore, i.e., until the stage is inductive. In our example,

4Note that we apply the effect of the reversed transition (C ⊖ t• + •t) and not the usual effect of the
transition (C⊖ •t + t•). This gives rise to the name backward reachability algorithm.

31



4 Verification of Population Protocols

the only non-dead transition is t3. Applying the reverse effect of t3 to the new minimal configu-
rations yields HY, nI⊖ t3

•+ •t3 = HY, N, yI and Hy, nI⊖ t3
•+ •t3 = HN, y, yI, of which only

HN, y, yI is not already excluded. The new basis is {HY, NI, HY, nI, Hy, nI, HN, y, yI}. Because
applying the reverse of t3 to the new basis configuration results in HN, y, y, yI, which is already
excluded by HN, y, yI, the algorithm terminates.

4.2.3 Checking Stable Termination

To check that a stage S is terminal, we need to show that S ⊆ Jφi
postK for some post-

condition φi
post (see Property 4 of Definition 4). Thus, it is enough to show that the

following Presburger formula is unsatisfiable:

∃C ∈ S : ¬φi
post(C)

4.2.4 Already Dead Transitions

Because stages are inductive, a transition t is dead in every configuration of a stage S
if and only if it is disabled in every configuration of S . Thus, it is enough to show that
the following Presburger formula is unsatisfiable:

∃C ∈ S : C ≥ •t

4.2.5 Eventually Dead Transitions

Let S be the stage represented by (D, B). Our goal is to find a certificate proving that a
set of not-yet-dead transitions U ⊆ T \D eventually becomes dead in any fair execution
starting in S. Then we know S ⇝ JDead(U)K and, because S is inductive, S ⇝ S ∩
JDead(U ∪ D)K. As deciding if there is a non-empty set of eventually dead transitions
is PSPACE-hard [JLE77], we limit our search for certificates to linear functions f (C) =
a · C = ∑q∈Q a(q) · C(q) that assign the potential a(q) ∈ N to each state q. We say
that configuration C has potential f (C). Specifically, we search for two types of linear
functions: ranking functions and layer functions.

Ranking Functions. A ranking function for transitions U is a linear function such that
(a) the occurrence of transitions in U reduces the potential, and (b) the occurrence of
other transitions does not increase the potential. This can be expressed as the following
Presburger formulas:

∧

u∈U

a · ∆(u) < 0 (a)

∧

t∈D∪U

a · ∆(t) ≤ 0 (b)

Note that a ranking function is a certificate for S ⇝ JDead(U)K: Every configuration
C ∈ S where U is not dead can reach some configuration C′ via a transition sequence
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that contains a transition t ∈ U. As no transition increases the potential, but t reduces
the potential, it must hold that f (C) > f (C′).

Layer Functions. A layer function for transitions U is a linear function such that (a) the
occurrence of transitions in U reduces the potential, and (b) when all transitions in U
become disabled, then they are dead. This can be expressed as the following Presburger
formulas:

∧

u∈U

a · ∆(u) < 0 (a)

∧

t∈D

∧

u∈U

∨

u′∈U

(•u⊖ t•) + •t ≥ •u′ (b)

Intuitively, formula (b) says that if transition t enabled the eventually dead transition
u, then some eventually dead transition u′ was already enabled, i.e., no transition can
reenable transitions in U once they are all disabled. Note that a layer function is a
certificate for S ⇝ JDead(U)K: If the transitions in U are not dead, then by (b) there is
an enabled transition t ∈ U and by (a) t reduces the potential.

Example 15 (Linear Certificates for Majority). Recall the majority protocol of Example 1
with its four transitions:

t1 : Y, N 7→ y, n t2 : Y, n 7→ Y, y t3 : N, y 7→ N, n t4 : y, n 7→ y, y

The stage graphs in Figure 4.1 prove its correctness. They use ranking and layer functions:

• The certificate Y + N for S1 ⇝ S2 is a ranking function for U = {t1}: No transition
increases the number of agents in {Y, N}, but transition t1 reduces the number.

• In S2, we know that t1 and t2 are already dead. The certificate y for S2 ⇝ S3 is a layer
function for U = {t3}: Transition t3 reduces the number of agents in y and once there
are no agents in y the transition t4 is also disabled. I.e., once t3 is disabled, it is dead.

4.2.6 Splitting

If we cannot find any eventually dead transitions for a stage S with representation
(D, B), we try to split it into smaller parts, i.e., we perform a case distinction. Specifi-
cally, we search for stages S1 . . . Sn such that S = (S1 ∪ · · · ∪ Sn) and for every Si some
additional transition ti ∈ T \ D is dead. Searching for a complete split in a single step
entails solving a Presburger constraint that does not belong to the existential fragment.
Therefore, we instead add one successor at a time until all configurations in stage S are
covered.

A set of states R ⊆ Q is a siphon for stage S if for every transition t ∈ T \ D it holds
that t• ∩ R ̸= ∅ =⇒ •t ∩ R ̸= ∅. In other words, every non-dead transition that
produces an agent in siphon R consumes an agent in R. Intuitively, once R is empty,
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it stays empty, i.e., an empty siphon for S is a death certificate for all transitions t with
•t ∩ R ̸= ∅.

Every successor we add corresponds to a siphon R ⊆ Q for stage S that certifies the
death of some non-dead transition and is empty in some not yet covered configuration
C. Specifically, the new successor contains all configurations of S where the siphon R
is empty. The set of configurations where the siphon R is not empty is upward-closed
with basis {HqI | q ∈ R}. Thus, we can limit the current stage to configurations where
R is empty by updating the basis B as described in Section 4.2.2. To ensure that we
construct splits with few successors, we use a heuristic for choosing the siphon of the
next successor. We will explain and motivate our heuristic with the following example.

a1

a2

a3

an

b1

b2

b3

bn
...

c1

c2

c3

cn

d1

d2

d3

dn
...

Figure 4.10: Petri net visualization of population protocol used to explain the heuristic for the
splitting of stages. This system has a large number of siphons. For example, any
set of states R ⊆ {a1, . . . , an, b1, . . . , bn} that contains at least one state of {ai, bi} for
each level i is a siphon. If R is empty, it stays empty and thus all transitions on the
left are dead.

Consider the population protocol visualized in Figure 4.10 with states A ∪ B ∪ C ∪D
where A = {a1, . . . , an}, B = {b1, . . . , bn}, C = {c1, . . . , cn} and D = {d1, . . . , dn} and
transitions

{ai, bi 7→ ai+1, bi+1 | 1 ≤ i < n} ∪ {an, bn 7→ a1, b1}
∪{ci, di 7→ ci+1, di+1 | 1 ≤ i < n} ∪ {cn, dn 7→ c1, d1}.

Assume that the current stage contains exactly those configurations where either all
states in A ∪ B are empty or all states in C ∪ D are empty. Note that no transition is
dead in every configuration, i.e., we need to split the stage. The split with the fewest
successors has size two and uses the empty siphons

A ∪ B (e.g., in configuration Hc1, . . . cn, d1, . . . , dnI) and
C ∪ D (e.g., in configuration Ha1, . . . an, b1, . . . , bnI).
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However, there are many siphons that are empty in some configuration of the stage
and if we do not choose siphons carefully, the resulting split can have an exponential
number of successors. For example, we could choose:

1. {a1, a2, a3, . . . , an} in Hb1, b2, b3, . . . , bnI
2. {b1, a2, a3, . . . , an} in Ha1, b2, b3, . . . , bnI
3. {a1, b2, a3, . . . , an} in Hb1, a2, b3, . . . , bnI
...

...
...

2n. {b1, b2, b3, . . . , bn} in Ha1, a2, a3, . . . , anI
2n + 1. C ∪ D in Ha1, a2, a3, . . . , an, b1, b2, b3, . . . , bnI

Note that the split has size 2n + 1 and was the result of always choosing a siphon with
the fewest states.5 This split missed some important correlation: For example, when the
siphon A is empty in a configuration of the stage, then so was either the larger siphon
A ∪ B or the larger siphon A ∪ C ∪ D. This is why we consider only siphons that are the
largest empty siphon in some configuration. Still, if we would choose any such siphon, we
could choose:

1. {a1, a2, a3, . . . , an} ∪ C ∪ D in Hb1, b2, b3, . . . , bnI
2. {b1, a2, a3, . . . , an} ∪ C ∪ D in Ha1, b2, b3, . . . , bnI
3. {a1, b2, a3, . . . , an} ∪ C ∪ D in Hb1, a2, b3, . . . , bnI
...

...
...

2n. {b1, b2, b3, . . . , bn} ∪ C ∪ D in Ha1, a2, a3, . . . , anI
2n + 1. C ∪ D in Ha1, a2, a3, . . . , an, b1, b2, b3, . . . , bnI

Note that the split has size 2n + 1 and was the result of always choosing a siphon with
the most states. While we do not miss any correlation this way, we cover only few
configurations with each additional successor, as larger siphons are empty in fewer
configurations. This is why we always choose a smallest siphon that is the largest empty
siphon in a configuration of the stage. Note that this results exactly in the minimal split
of size two.

4.2.7 Automatic Speed Bounds

So far, we only use stage graphs to automatically verify that a population protocol sat-
isfies a stable termination property. However, in practice, we are often also interested
in the time it takes for the protocol to stabilize under stochastic scheduling (see Sec-
tion 3.3). Instead of just verifying that a population protocol computes a Presburger
formula, we also want to analyze the speed of the computation. In this section, we ar-
gue that the certificates of a stage graph contain information about the speed of a pop-
ulation protocol. Specifically, they can prove that the expected number of interactions

5While the empty set is the smallest empty siphon, it is no death certificate for any transitions.
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needed to enter a successor is bounded by a function that depends only on the num-
ber of agents n. Note that the following approach is based on [BEK18] where Blondin
et al. use a closely related version of stage graphs to automatically bound the speed of
population protocols.

We produce four different speed bounds: 2O(n log n), O(nc) for some constant c ≥ 3,
O(n3), and O(n2 log n). Note that all speed bounds are upper bounds for the expected
number of transitions, e.g., a certificate might guarantee only a speed of O(n3) even
though the actual speed of the stage is n2. Each of the four speed bounds corresponds
to a different class of certificates. As before, certificates are linear functions f (C) =
a · C = ∑q∈Q a(q) · C(q) that assign the potential a(q) ∈ N to each state q. We say that
configuration C has the potential f (C), a state q has potential if a(q) > 0, and an agent has
potential if it is in a state with potential.

Layer Functions - 2O(n log n).
Layer functions are one of the two types of certificates already described in Section 4.2.5.
Recall that a layer function for transitions U is a linear function such that (a) the occur-
rence of transitions in U reduces the potential, and (b) when all transitions in U become
disabled, then they are dead. We will now argue that a layer function guarantees the
speed 2O(n log n): As long as the transitions in U are not disabled, it is possible to re-
duce the potential due to (a). Intuitively, a layer function is a bounded certificate with
bound 1. A reduction of the potential can happen only O(n) times in a row because
the maximum potential is linear in n while the reduction is at least constant. Thus, for
any configuration, there is a transition sequence of length O(n) that disables U, and at
that point, (b) tells us that the transitions in U are dead. The probability of executing
a specific transition is 1/n2 and the probability of executing a sequence of length O(n)
is n−2O(n) = 2−O(n log n). Thus, we expect 2O(n log n) transitions until the successor is
entered.

Ranking Functions - O(nc).
Ranking functions are one of the two types of certificates already described in Sec-
tion 4.2.5. A ranking function for transitions U is a linear function such that (a) the
occurrence of transitions in U reduces the potential, and (b) the occurrence of other
transitions does not increase the potential. We will now argue that a ranking function
guarantees the speed O(nc) for some constant c ≥ 3: As long as the transitions in U
are not disabled, it is possible to reduce the potential due to (a). This can only happen
O(n) times because the potential is at most linear in n, never increases, and is always
reduced by at least some constant value. Because the configurations that can enable a
transition t are upward-closed, it is always possible to enable a transition in U after a
constant number d ∈ N of transitions.6 Thus, as long as the transitions in U are not
dead, it is possible to execute some transition t ∈ U in d + 1 steps by enabling t in d
steps and then executing t. Intuitively, a ranking function is a bounded certificate with

6The constant d can be computed via the backward reachability algorithm. Crucially, while d can be
double-exponential in the size of the protocol, it is independent of the input size n.
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bound d + 1. The probability of executing a sequence of d + 1 steps is n−2(d+1). There-
fore, we expect the O(n) reductions to occur within O(n) · n2d+2 = O(nc) transitions
where c = 2d + 3.

Layer Ranking Functions - O(n3).
Intuitively, a layer ranking function is both a ranking function and a layer function.
Formally, a layer ranking function for transitions U is a ranking function for U such that
(c) when all transitions in U become disabled, then they are dead. Due to (c), either
the transitions in U are dead and we are in a successor stage, or some transition in U is
already enabled. Thus, we have d = 0 and the speed is O(nc) = O(n2d+3) = O(n3).

Fast Layer Ranking Functions - O(n2 log n).
A layer ranking function is fast if every agent that has potential can always interact with
another agent in a way that reduces the potential. Intuitively, this implies that as long
as the potential is large, the probability of reducing the potential is large. Because the
potential is at most linear in n and is distributed among n agents, the probability of
choosing an agent with potential is approximately f (C)

O(n) . As this agent can reduce the
potential with some other agent that is chosen with probability 1/n, the probability of
reducing the potential is approximately f (C)/n2. The potential f (C) can be reduced
at most O(n) times because the potential is always reduced by at least some constant
value. Thus, the expected number of transitions is ∑O(n)i=1

n2

i = n2 ∑O(n)i=1
1
i = O(n2 log n).

Algorithm 2 Finding Eventually Dead Transitions and Speed Bounds

1: Search ranking function fr for largest set Ur of transitions
2: if Ur = ∅ then
3: Search layer function fl for largest set Ul of transitions
4: if Ul = ∅ then
5: return ∅ ▷ no certificate, no speed bound
6: else
7: return Ul with certificate fl and speed 2O(n log n)

8: else
9: Construct layer ranking function flr from fr for largest set Ulr of transitions

10: if Ulr = ∅ then
11: return Ur with certificate fr and speed O(nc)
12: else
13: Search for fast layer ranking function f f lr for Ulr
14: if no fast layer ranking function was found then
15: return Ulr with certificate flr and speed O(n3)
16: else
17: return Ulr with certificate f f lr and speed O(n2 log n)
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Algorithm.
Algorithm 2 shows our heuristic for searching eventually dead transitions with certifi-
cates that have fast speeds. The construction of the largest ranking function in Line 1
first searches ranking functions for each transition individually and then combines
them. The construction of the largest layer function in Line 3 searches layer functions
for increasingly large sets of transitions. In Line 9, we construct the largest layer rank-
ing function from the largest ranking function by iteratively removing transitions that
violate the layer constraint (b). The search for fast layer ranking functions in Line 13
repeatedly checks if the current function is fast. If it is not fast due to agents in some
state q, it looks for an alternative function where q does not have potential.

Experimental Results.
We implemented our algorithm on top of the SMT solver Z3 [MB08] and evaluate the
automatic speed analysis of population protocols in Table 4.1. To allow an easy com-
parison with [BEK18], we use the same benchmarks and restate their evaluation results.
The experiment was carried out on a machine with an Intel Core i7-11700K @ 3.60GHz
CPU, 8GB of RAM, and a timeout of 1000 seconds (≈ 16.67 minutes).

For most benchmarks, both approaches yield identical speed bounds. The only ex-
ception is the average-and-conquer protocol [AGV15] with parameters m=5 and d=1,
where we can show a tighter speed bound of O(n2 log n) instead of O(n3).7 Our ap-
proach outperforms [BEK18] significantly across all benchmarks and exhibits superior
scalability as the number of states and transitions increases. For instance, we can ana-
lyze the logarithmic flock-of-birds protocol [BEK18; BEJ18a] up to parameter c=245−1,
while [BEK18] times out for c=212−1. One contributing factor is that the stage graphs
generated by [BEK18] contain many stages. In the case of the flock-of-birds protocol
[CDF+11], they already generate 54 stages for c=5, and this count grows rapidly, reach-
ing 12294 stages for c=13. In contrast, our stage graphs usually consist of 3-8 stages,
and this number remains relatively constant even when a protocol’s parameters are al-
tered. This small size of our stage graphs makes it possible to gain valuable insights
about a protocol’s computation, as described in next Section 4.3.

7The exact reason for this difference is unknown. It might be the case that the lower number of stages
helps or that our search for fast layer ranking functions is simply stronger. In general, the average-and-
conquer protocol [AGV15] is a very interesting benchmark for automatic speed analysis as there seems
to be a non-trivial border between cases with O(n2 log n) and O(n3) bounds (compare Table 4.1).
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Table 4.1: Evaluation comparing the speed analysis of our approach and [BEK18] with timeout
1000s. |Q|, |T|, and |S| are the number of states, transitions, and stages.

Parameters |Q| Speed Time Speed Time

Broadcast [CDF+11] 2 1 5 O(n2 log n) < 1s 3 O(n2 log n) < 1s
Maj. [BEK18, Example 3] 5 6 13 O(n2 log n) < 1s 6 O(n2 log n) < 1s
Majority (Example 5)a 4 3 9 O(n2 log n) < 1s 6 O(n2 log n) < 1s
Majority (Example 1) 4 4 11 2O(n log n) < 1s 6 2O(n log n) < 1s

Flock-of-bird protocol [AAD+06] (see Example 7)b: x ≥ c
c = 30 31 496 126 O(n3) 119s 3 O(n3) 17s
c = 50 51 1326 206 O(n3) 953s 3 O(n3) 140s
c = 70 71 2556 - - T/O 3 O(n3) 701s

Logarithmic flock-of-bird protocol [BEK18] adapted from [BEJ18a]b: x ≥ c
c = 25−1 10 34 130 O(n3) 6s 3 O(n3) < 1s
c = 210−1 20 119 4098 O(n3) 396s 3 O(n3) 3s
c = 225−1 50 674 - - T/O 3 O(n3) 52s
c = 240−1 80 1679 - - T/O 3 O(n3) 408s
c = 245−1 90 2114 - - T/O 3 O(n3) 702

Flock-of-bird protocol (tower variant) [CDF+11]b: x ≥ c
c = 10 11 19 1542 O(n3) 84s 3 O(n3) < 1s
c = 13 14 25 12294 O(n3) 816s 3 O(n3) < 1s
c = 15 16 29 - - T/O 3 O(n3) < 1s
c = 20 21 39 - - T/O 3 O(n3) 18s
c = 23 24 45 - - T/O 3 O(n3) 409s

Average-and-conquer protocol [AGV15]a: x ≥ y (Majority)
m = 3, d = 2 8 36 1948 O(n2 log n) 99s 8 O(n2 log n) 2s
m = 5, d = 1 8 36 1870 O(n3) 80s 6 O(n2 log n) 2s
m = 5, d = 2 10 55 - - T/O 8 O(n3) 4s
m = 7, d = 1 10 55 - - T/O 6 O(n2 log n) 3s
m = 7, d = 2 12 78 - - T/O 8 O(n3) 5s
m = 9, d = 1 12 78 - - T/O 6 O(n3) 6s
m = 39, d = 1 42 903 - - T/O 6 O(n3) 515s
m = 15, d = 14 44 990 - - T/O 8 O(n3) 942s

Remainder protocol [AAD+06]: ∑1≤i<m ai · xi ≡ 0 (mod m)
m = 5 7 25 225 O(n2 log n) 13s 6 O(n2 log n) 2s
m = 9 11 63 7035 O(n2 log n) 544s 6 O(n2 log n) 5s
m = 10 12 75 - - T/O 6 O(n2 log n) 7s
m = 20 27 150 - - T/O 6 O(n2 log n) 40s
m = 30 22 250 - - T/O 6 O(n2 log n) 901s

Threshold protocol [AAD+06]: ∑−2≤i≤2 ai · xi < c
c = 0 20 146 1049 O(n3) 166s 6 O(n3) 7s
c = 1 28 288 1049 O(n3) 155s 6 O(n3) 14s
c = 2 36 478 - - T/O 6 O(n3) 25s
c = 4 52 1002 - - T/O 6 O(n3) 129s
c = 6 68 1718 - - T/O 6 O(n3) 727s

Protocol [BEK18] This work
|T| |S| |S|

aUnder the assumption that there is no tie.
bWe use JDis(U)K as overapproximation of JDead(U)K as described in Sec. 5 of [BEH+20] (see App. A).
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4.3 Tool: Peregrine

We implemented the automatic verification procedure of Section 4.2 in the free tool
Peregrine.8 In Peregrine, users can create, simulate, analyze, and verify population
protocols with an easy-to-use graphical user interface. We will now highlight a few of
the features of Peregrine that are related to stage graphs. These features help users to
understand how a protocol works, how fast it is, and why it is correct or incorrect.9

Stage Constraint Dead Cert. Speed
S0 PotReach(JY < NK) ∅ Y O(n2 log n)
S4 PotReach(JY < NK) ∧Y = 0 {t1, t2} y 2O(n log n)

S5 PotReach(JY < NK) ∧Y = 0∧ y = 0 {t1, t2, t3, t4} ⊥ ⊥
S1 PotReach(JY ≥ NK) ∅ N O(n2 log n)
S2 PotReach(JY ≥ NK) ∧ N = 0 {t1, t3} n O(n2 log n)
S3 PotReach(JY ≥ NK) ∧ N = 0∧ n = 0 {t1, t2, t3, t4} ⊥ ⊥

Figure 4.11: Stage graphs visualization of Peregrine for majority voting protocol of Example 1.
For each stage, the tool gives a constraint, a set of dead transitions, a certificate and
a speed. The combined speed of the protocol is 2O(n log n) because of the slow stage
S4.

Stage Graph Visualization. For the majority voting protocol (see Example 1), the tool
verifies correctness in less than two seconds by generating two stage graphs. It then
visualizes the stage graphs as Venn diagrams (see Figure 4.11) to highlight that the
system becomes trapped within sets of configurations with decreasing size. The user
clearly sees that the protocol works in three phases. The configurations of each stage
are described with an easy-to-read Presburger constraint. For each stage, Peregrine lists
the already dead transitions. If a stage is non-terminal, Peregrine additionally shows
the eventually dead transitions with the corresponding certificate and implied speed.
This lets the user know that the protocol is fast in most phases of the computation but

8Peregrine is available at https://peregrine.model.in.tum.de together with an online demo.
9Peregrine is developed by multiple authors. As detailed in Appendix B, not all of the following features

were implemented by the author of this thesis.
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Figure 4.12: Details given py Peregrine for stage S4 in Figure 4.11 at configuration HN, 4 · n, 2 · yI.

slow in S4, which has the speed 2O
(n log n). The details of S4 (see Figure 4.12) explain its

slow speed: The two eventually dead transitions t3 : N, y 7→ N, n and t4 : y, n 7→ y, y
have opposite effects.

Simulation within Stage Graphs. To understand the computation of a population
protocol even better, Peregrine allows the user to simulate the protocol while visualiz-
ing the run in the Venn diagram of the stage graphs (see Figure 4.13). First, the user
chooses an initial configuration or starts the simulation from the precomputed example
configuration of a stage. The current configuration is always shown as a yellow circle
within the region of its stage. Then, the user chooses the next interaction by clicking on
two agents in the current configuration. The resulting configuration is automatically
placed in the correct stage and connected with an arrow. Step by step this builds up
a partial reachability graph. For configurations in non-terminal stages, Peregrine also

Figure 4.13: Peregrine’s visualization of a simulation for the majority voting protocol inside of
the protocol’s stage graphs. The simulation is a walk in the partially constructed
reachability graph. Configurations of a stage are automatically placed within the
stage’s region in the Venn diagram. The currently selected configuration is =
HN, 4 · n, 2 · yI.
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shows the current value of the certificate. Intuitively, this value describes the distance
to the next stage and transitions that reduce this value effectively make progress. The
user can automatically apply such a transition by clicking the PROGRESS button. To
generate a full simulation of the protocol with random interactions, the user can click
on PLAY . It is possible to navigate through the current simulation run by clicking on
the buttons PREV and NEXT or by selecting a configuration in the Venn diagram.

Incorrect Protocols. In case a user tries to verify an incorrect population protocol,
Peregrine will fail to find stage graphs that verify its correctness. Instead, it will show
partially constructed stage graphs and highlight the problematic stages. For example,
if we remove the transition t4 : y, n 7→ y, n from the majority voting protocol, then the
protocol no longer computes majority. The partial stage graph for this broken majority
protocol is depicted in Figure 4.14. The user can easily see that the protocol is still
correct in case there was a majority for ”no” because the left stage graph is complete.
Peregrine failed to prove correctness only for a single stage. The constraint for the
problematic stage S4 is PotReach(JY ≥ NK) ∧ Y = 0 ∧ N = 0, i.e., the protocol might
be incorrect for configurations with no active agents. Using this information, Peregrine
was able to find a counterexample for correctness by querying the tool LoLA [Wol18].
The counterexample starts in state HY, NI and ends in Hy, nI without consensus. This
makes it easy to realize that the protocol is incorrect in case of a tie.

Figure 4.14: Counterexample automatically found by Peregrine when verifying an incorrect ma-
jority voting protocol. It is shown in the stage graphs as a run from = HY, NI to

= Hy, nI. The graph with root S1 is only a partial stage graph, because stage S4
contains configurations that do not have the correct consensus. Stage S3 is not vi-
sualized as it was split and thus is completely covered by S4 and S5.

4.4 Related Work

Early work on verification of population protocols can be divided into two main cate-
gories. The first category focuses on verification for a finite number of inputs, which
involves techniques such as model checking and the construction of reachability graphs
for fixed inputs [PLD08; SLD+09; CMS10; CDF+11]. While this approach can demon-
strate partial correctness or identify counterexamples, it does not offer complete verifi-
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cation for all possible inputs. The second category involves the use of an interactive the-
orem prover to verify protocols, as demonstrated in [DM09]. However, this approach
is semi-automatic and requires human interaction for each new protocol.

The first efficient algorithm for the automatic verification of population protocols
was described in [BEJ+17]. It combines the techniques of potential reachability (com-
pare Section 4.2.1) and layered termination (compare layer functions in Section 4.2.5)
to verify the correctness of a subclass of population protocols. Notably, this subclass
contains only protocols that are silent, i.e., that always reach a configuration where all
non-silent transitions are disabled. The approach was the first verification technique
implemented in the tool Peregrine [BEJ18b]. Our approach can be understood as a gen-
eralization of [BEJ+17] in the sense that their technique corresponds to a linear stage
graph where all certificates are layer functions. Next to the larger class of verifiable
protocols, the most significant difference is the fact that we supply a certificate for cor-
rectness that can be independently checked.

A first version of stage graphs was presented in [BEK18] in order to automatically
analyze the speed of population protocols. While their approach cannot be used to
show correctness of population protocols, it can show termination, i.e., it can verify the
property:

F(Gφtrue
cons ∨Gφ

false
cons)

They describe a procedure that constructs a stage graph using heuristics, such as a
technique based on the transformation graph, which describes how transitions alter
the states of agents. In comparison, our work gives the first completeness result that
guarantees the existence of a stage graph for the larger class of stable termination prop-
erties. Consequently, our approach can verify the correctness of population protocols
while providing the same speed analysis. Using better heuristics, we construct stage
graphs more efficiently and produce significantly fewer and simpler stages (see Sec-
tion 4.2.7). As a result, our stage graphs serve not only as certificates for correctness but
also help to understand how a protocol computes and why it is correct.

Other Parameterized Verification Techniques

There is a large body of research that verifies parametric systems using a cutoff tech-
nique. Relevant references include [ARZ+15; BCG89; CTT+04; EN03; KKW10], and a
comprehensive survey can be found in [BJK+15]. The idea of this technique is to prove
that a specification holds for any number of agents as long as it holds for a number of
agents below a specific threshold, known as the cutoff. This approach is only applicable
if there is a cut-off, and it is only effective if this cutoff is relatively small. While the cut-
off technique can be used to verify parametric systems with an array or ring structure,
they are not effective for population protocols.

Another model checking technique that effectively handles the infinite state space of
parameterized systems is regular model checking [BJN+00; Abd12]. The fundamental
concept behind this approach is to represent the system configuration as a string, where
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each agent is denoted by a letter. This representation enables the use of regular lan-
guages to describe infinite sets of configurations and regular transducers to model the
transition relation. In combination with automata learning [Ang87], a technique that
learns regular languages from examples, regular model checking was used to prove
safety properties [CHL+17], liveness properties under arbitrary schedulers [LR16], and
even termination under so-called finitary fairness [LLM+17]. However, population pro-
tocols possess both an incompatible communication structure (clique) and a different
fairness assumption (global fairness).

Population Protocol Simulation

Simulation serves as a valuable tool for gaining insights into stochastic population
protocols, particularly in the analysis of their speed. Sequential simulation involves
the random selection of the next pair of interacting agents for each interaction. One
such sequential simulator is incorporated into the Peregrine tool, which is described
in Section 4.3. Alternatively, a more efficient batch simulation technique, outlined
in [BHK+20], allows for multiple interactions to occur simultaneously. This technique
considers interaction sequences in which no agent participates more than once, result-
ing in accelerated simulation while maintaining the precise stochastic dynamics. The
implementation of this approach can be found in the software package ppsim, which
facilitates efficient simulation and visualization of population protocols [DS21].

4.5 Open Research Questions

Stage graphs verify stable termination properties for a single population protocol. How-
ever, in many cases, protocols are parameterized, resulting in a family of similar pro-
tocols. For instance, consider the flock-of-birds family in Example 7: Each parameter
c ≥ 1 defines a different protocol that computes the formula q1 ≥ c. Hence, an im-
portant area to explore is the verification of protocol families. Specifically, it is worth
investigating if stage graphs can be extended to certificates for protocol families. This
may result in an automatic and efficient technique that can be implemented in the tool
Peregrine.

Many extensions of the population protocol model have been introduced. These in-
clude cover-time services [MS15b], clocks [Asp17], broadcasts [BEJ19], and protocols
where the number of states depends on the number of agents [AAE+17; GS20]. Fu-
ture work may investigate how stage graphs can be used to prove properties of these
extended models.

Another interesting research direction concerns the tailor problem:

Definition 9 (Tailor Problem).
Given: A population protocol P that computes some formula.
Question: What formula does P compute?
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Esparza et al. already showed that the tailor problem is decidable and they even give
an algorithm that solves it [EGL+17]. However, this algorithm has very limited prac-
tical application because of its high computational complexity and large resulting for-
mulas. Future research may find a more efficient and practical technique that can be
used to provide helpful feedback during the design process of population protocols.
For example, it may be possible to automatically generate a stage graph for consensus
(F(Gφtrue

cons ∨Gφ
false
cons)) and then extract and simplify the computed formula.

The automatic computation of speed bounds using stage graphs provides an up-
per bound on the expected number of interactions until protocol convergence. Conse-
quently, the speed analysis of population protocols could be improved by a comple-
mentary lower bound.
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The synthesis of population protocols involves the creation of a protocol that satisfies
a formal specification. The specification is the Presburger formula that the protocol
should compute. While the synthesis task differs from the verification task discussed
in Chapter 4, both are closely related. Verification checks the correctness of a protocol,
whereas synthesis aims to construct a correct protocol.

Although the focus of this work primarily lies in the efficient analysis of population
protocols, it is worth mentioning that we have also explored the synthesis aspect. While
synthesis is not the central topic of our research, it is closely tied to analysis, and we
believe it is valuable to provide a high-level overview of our work in this area.

Problem Statement

Recall that population protocols compute precisely the formulas expressible in Pres-
burger arithmetic [AAE+07]. Because Presburger arithmetic admits quantifier elimina-
tion, the synthesis task is as follows:

Definition 10 (Synthesis Task).
Input: A quantifier-free Presburger formula φ.
Output: A population protocol P that computes φ.

For the rest of the chapter, let φ be a quantifier-free Presburger formula that is the input
for a synthesis procedure. We evaluate synthesis procedures using two metrics:

The first is the size of the resulting protocol, i.e., its number of states. This is com-
pared to |φ|, which is the length of the formula φ with constants written in binary. For
example, the formula 42x− 3y > 7 ∨ 8x− 1y ≡11 3 with binary constants is written as
the string “101010x − 11y > 111 ∨ 1000x − 1y ≡1011 11” which has a length of 31. A
protocol is considered succinct if its size is O(poly(|φ|)), i.e., if the number of states is
polynomial in the length of the formula.

The second metric is the speed of the protocols, i.e., the expected number of interac-
tions required to reach a stable consensus. In the context of this chapter, we consider a
protocol fast if its speed is O(n2 log n), where n is the number of agents.1

1 We will actually synthesize protocols with speed O(n2). However, this weaker definition of “fast”
makes it easier to compare with competing synthesis procedures and it coincides with the notion of
fast layer ranking functions in Section 4.2.7.
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5.1 The First Procedure: Fast but Large

The first synthesis procedure was given by Angluin et al. [AAD+04] as part of their
proof about the expressive power of population protocols [AAE+07]. We will now give
a brief description of this procedure and explain why the resulting protocols are not
succinct.

The synthesis procedure has two steps, as visualized in Figure 5.1. In the first step,
the procedure constructs one base population protocol for each atomic formula of the
input formula φ. These are threshold formulas of the form ∑k

i=1 aixi < b or modulo formulas
of the form ∑k

i=1 aixi ≡m b, where ai, b, and m ≥ 2 are integers constants and xi is
a variable. In the second step, protocols for all atomic formulas are combined with a
standard product construction.

(2x > y) ∧ (x ≡3 2)
↓

1 2

3 ...

2x > y

1 2

3 ...

x ≡3 2

×

↓

1 1 1 2 ...

2 1 2 2 ...

... ... . . .

(2x > y) ∧ (x ≡3 2)

Figure 5.1: Synthesis procedure from [AAD+04] that results in fast but large protocols. In the
first step, base protocols for each atomic formula are constructed. Then, the proto-
cols are combined using a product construction.

We will now explain the first step in more detail. The idea of the base protocol con-
struction is similar to the idea in the flock-of-birds protocol (see Example 7): The proto-
col tries to collect the information about the total value ∑k

i=1 aixi in a single agent. How-
ever, because the number of agents is arbitrary and their memory limited, an agent can
only collect value up to a constant c. This constant c is chosen high enough to decide if
the formula is true. For example, for the threshold formula 3x1 − 2x2 < 5 it is enough
to collect a value of c = 5 to decide that the formula is satisfied.

Example 16 (Large Threshold Protocol). We give a formal description of the protocol from
[AAD+04] for a threshold formula ∑k

i=1 aixi < b, let c
def
= max(|a1|, |a2|, . . . , |ak|, |b| + 1).
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Their protocol for a modulo formula is similar.

Q
def
= {(l, o, v) | l ∈ {L, F}, o ∈ {true, false},−c ≤ v ≤ c}

I
def
= {(L, ai < b, ai) | 1 ≤ i ≤ k}

O((l, o, v))
def
= o

The states of the protocol are triples. Intuitively, the first component indicates whether the agent
is a leader (L) or a follower (F), the second component indicates the agent’s current output,
and the third component is the value collected by the agent. Agents start as leaders with a value
equal to their coefficient in the formula.

An interaction between two agents has no effect if both are followers. If at least one of them is
a leader, then they change their state according to the following transition:

(∗, ∗, v1), (∗, ∗, v2) 7→ (L, o, vsum), (F, o, vrest)

where o = true if v1 + v2 < b else false, vsum = max(−c, min(c, v1 + v2)), and vrest =
v1 + v2 − s. Intuitively, this performs a leader election in the first component. This leader
stores as much of the combined value as possible (vsum) and the follower stores the rest (vrest).
The output of both agents is set according to the leader’s value.

Speed and Size. In a careful speed analysis, Angluin et al. show that the synthesized
protocols are fast [AAD+04]. However, we will now argue that the protocols are large
because of two reasons: (i) the inefficient value representation in base protocols and (ii)
the product construction for Boolean combination.

(i) Value Representation: Consider the formula φ
def
= x < c. It has length |φ| =

Θ(log c) because the length of the formula depends on the binary representation
of c. However, the base protocol for φ has a state for each value between 0 and c,
i.e., it has size Θ(c) = Θ(2|φ|). Intuitively, agents store value in unary while the
length of the formula depends on the binary representation of constants.

(ii) Boolean Combination: Consider the formula φ
def
= φ1 ∧ φ2 ∧ · · · ∧ φm that is a

boolean combination of m atomic formulas, where φi
def
= xi < 1. Because each

atomic formula has a constant size, it holds that m = Θ( |φ||φi | ) = Θ(|φ|). For each
atomic formula φi, the base protocol construction results in a protocol with 20
states. The product construction for m base protocols with 20 states produces a
protocol with 20m = 20Θ(|φ|) states. Intuitively, the product construction multiplies
states of base protocols while the formula adds the length of each atomic formula.

5.2 The Second Procedure: Succinct but Slow

In our paper [BEG+20], we give a synthesis procedure that produces succinct protocols.
Some of the key techniques in the paper are a binary value representation, the use of
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helpers, as well as the separation of small and large inputs. These techniques will be
explained in the subsequent section, where we discuss the state-of-the-art synthesis
procedure that incorporates all of them.

While the resulting protocols are succinct, they are also slow. We illustrate this via
the (slightly simplified) protocol that is synthesized for the flock-of-birds task.

Example 17 (A Succinct but Slow Flock-of-Birds Protocol). Assume that we have a flock
with an unknown number of birds. Each bird has a sensor that detects if it is “sick” (1) or
“healthy” (0). We will now give a family of population succinct protocols that computes if the
number of sick birds is at least 2d for some parameter d ∈N.

Q
def
= {0, 1, 2, 4, 8 . . . , 2d−1, 2d} I

def
= {0, 1} O(s)

def
= (s = 2d)

Note that there is only a state for every power of two and not for every value. Thus, the number
of states is d + 1 = O(|φ|) and the protocol is succinct. There are three types of transitions:

upi : 2i, 2i 7→ 2i+1, 0 for every 0 ≤ i ≤ d

downi : 2i+1, 0 7→ 2i, 2i for every 0 ≤ i < d

truex : 2d, x 7→ 2d, 2d for every x ∈ Q

Intuitively, the up-transitions combine the information of two agents with value 2i, producing
an agent with value 2i+1 and an agent with value 0. The down-transitions undo up-transitions
and allow the splitting of larger powers of two. The true-transitions propagate the information
that there are 2d sick birds. For a Petri net visualization of the protocol, see Figure 5.2.

The protocol is correct because if there are at least 2d sick birds, then it is always possible to
accumulate that value in a single agent via a sequence of up-transitions. At that point, the down-
transitions cannot undo this progress and the true-transitions lead to the correct consensus.2

To understand why the protocol is slow, we will analyze its worst-case input: a flock of n≫ 2d

birds with exactly 2d sick birds and a large number of n− 2d healthy birds. For the protocol to
reach the correct consensus, a single agent needs to collect all information and reach state 2d.
Until this happens, there always is a large number O(n) of agents in state 0, but the number
of agents with positive value is at most 2d = O(1), i.e., constant in n. Intuitively, this implies
that the probability of progress via an up-transition is O( 1

n2 ), while the probability of regress
via a down-transition is Ω( 1

n ). Using the theory for biased random walks, this tells us that the
expected number of interactions is Ω(n2d−2).

Please note that the general construction for arbitrary formulas even requires 2Ω(n) in-
teractions (see [CGH+22, Example 7] or Appendix E).

2 The attentive reader will notice that the down-transitions are not necessary for the correctness of this
example. They are only present because the general construction for threshold formulas also needs to
handle negative values. These negative values need to be able to “cancel out” with positive values.
Because only agents with the same absolute value can cancel (2i,−2i 7→ 0, 0), this requires that larger
powers can decay. For more details, see [CGH+22, Example 6] or Appendix E.
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Figure 5.2: Petri net visualization of a succinct but slow flock-of-birds protocol. It is a simpli-
fied version of the protocol that is synthesized by our procedure in [BEG+20]. All
up-transitions are colored green and all down-transitions are colored red. The true-
transition is black and consumes one agent in 2d and any other agent as implied by
the dashed arcs.

5.3 The State-of-The-Art Procedure: Fast and Succinct

In [CGH+22], we give a synthesis procedure that produces fast and succinct population
protocols. We will now explain some of its central ideas.

5.3.1 Population Computers

The synthesis procedure makes use of a generalization of population protocols called
population computers. Population computers are easier to design because they extend
population protocols in three ways. However, we show that a population computer
can be transformed into an equivalent regular population protocol.

First, while in population protocols agents interact in pairs, population computers
allow so-called k-way interactions, i.e., interactions between k agents.3 For example, a

3Note that k-way interactions are possible in chemical reaction networks (see Chapter 6). However, like
the 2-way interactions of population protocols, k-way interactions do not change the number of agents.
This is a key difference to chemical reactions, which can change the number of molecules.
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3-way interaction changes the states of three agents and might look like this:

A, A, B 7→ C, D, E

The second extension introduces helpers, special auxiliary agents that are present in-
dependent of the input. In contrast to the concept of leaders [AAE08], the exact number
of helpers is unknown because there might be superfluous helpers. Intuitively, when
designing a protocol with leaders, one can rely on the exact number of auxiliary agents
and their initial state. However, in a protocol with helpers, we only know that enough
helpers are in the desired state but there might be more.

The last extension allows population computers to define the output of a configura-
tion with a more general function. Instead of defining the output of a configuration
as its consensus (i.e., as the common opinion of all agents), population protocols can
define the output of configurations according to its support. The support of a configu-
ration refers to the set of states that are non-empty. For instance, supp(H3 · A, 42 · BI) =
{A, B}. This extension simplifies the protocol design process, as demonstrated by the
following example.

Example 18 (Population Computer for Majority). Recall the incorrect majority protocol of
Example 5. It has only three of the four transitions of the majority protocol:

t1 : Y, N 7→ y, n t2 : Y, n 7→ Y, y t3 : N, y 7→ N, n ((((((((hhhhhhhht4 : y, n 7→ y, y

However, the output function O(s)
def
= (s = Y) is unchanged. As explained in Example 5, the

protocol does not compute the formula Y ≥ N in case of a tie. For example, if we start with
HY, NI, the protocol “gets stuck” in Hy, nI, where the agents have different outputs.

In contrast, a population computer can leverage the more general output and instead use the
following output function:

O(supp(C)) =

{
true if supp(C) ⊆ {Y, y} ∨ supp(C) = {y, n}
false if supp(C) ⊆ {N, n}

Note that this function determines the output of a configuration directly from its support and
does not require a consensus of all agents. Because a tie leads to a configuration with support
{y, n}, the population computer with this output function correctly computes majority.

5.3.2 Succinct Population Computers

Our synthesis procedure in [CGH+22] starts by constructing a succinct population com-
puter. While we will not describe the full construction in detail, we will use Figure 5.3
to explain how our approach addresses the two problems encountered in the synthesis
procedure of Section 5.1. Please note that Figure 5.3 depicts the full construction, which
uses methods that have not been explained at this point. We will clarify the relevant
aspects of the visualization where necessary.
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Figure 5.3: Petri net visualization of population computer for formula 8x + 5y ≡11 4 ∨
y− 2x ≥ 5. Places (circles), transitions (squares), and tokens (dots) represent states,
transitions, and helpers, respectively. All dashed arrows implicitly lead to the reser-
voir state 0. It has 22 helpers, although only 9 are drawn for space reasons. The
computer has three parts: The left part with blue states calculates the modulo for-
mula 8x + 5y ≡11 4, the right part with orange states calculates the threshold for-
mula y− 2x ≥ 5, and the green middle distributes input agents in the initial states x
and y. For details on the output function, see [CGH+22] or Appendix E.

Value Representation. Figure 5.3 shows a population computer for a formula that is
a Boolean combination of two atomic formulas. The left half of the visualization cor-
responds to a modulo formula and the right half to a threshold formula. In both parts
of the computer, there is a ladder-like structure of states with increasing value. Note
that there are only states with absolute values that are a power of two. Intuitively, this
allows to represent value in binary compared to the unary representation in Section 5.1.

Binary Combination. The center of Figure 5.3 shows the initial states x and y of for-
mula 8x + 5y ≡11 4 ∨ y− 2x ≥ 5. An “input” agent in one of these states contributes
value in both atomic formulas. For example, an agent in state y needs to represent the
value 5 in the modulo computation on the left and the value 1 in the threshold compu-
tation on the right. Recall that the synthesis procedure by Angluin et al., described in
Section 5.1, performed a product construction and allowed input agents to participate
simultaneously in the computations of all atomic predicates. As this leads to an expo-
nential number of states, we instead make use of helpers so that each agent is only part
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of a single computation. For example, the bottom green transition

y, 0, 0 7→ (4)1, (1)1, (1)2

consumes one agent in y and two helpers and adds the value 4 + 1 = 5 in the left
computation and 1 in the right computation. Note that there can be an arbitrary number
of input agents that need to be distributed and each distribution consumes helpers.
However, we are guaranteed only a constant number of helpers. Thus, the protocol
continuously improves the value representation in order to free agents. For example,
the transition

(2)1, (2)1 7→ (4)1, 0

combines two agents with value 2 in the left computation to a single agent with com-
bined value 4. This produces an agent with value 0 that can be reused as a helper in
future input distributions.

5.3.3 Transforming Population Computers into Fast Population Protocols

The succinct population computers explained above are transformed back into regular
population protocols in a series of steps. We will only explain the idea for the removal
of helpers and refer to [CGH+22] or Appendix E for details and information on the
other steps.

Our task is to transform a population computer with helpers into one that does not
need helpers. In a population computer without helpers, every agent is an input agent.
However, we need to supply additional agents as helpers. The only option is to use
some of the input agents as helpers. For this, we make it possible to combine two
agents in the same input state X:

X, X 7→ 2X, 0

Intuitively, the agent in state 2X is an input agent in a new input state that represents
twice the value of an agent in state X. This allows us to use the agent with value 0 as
a helper. There is a problem with this approach: In case the number of input agents
is small, this construction does not produce enough helpers. This is easy to see if you
consider the case where we need 20 helpers but only get 15 input agents. Therefore,
our construction treats small inputs separately and performs a backup computation
that can exploit the fact that there are few agents (see [BEG+20] or Appendix D).

Speed. We show that the resulting population protocols are fast. First, the proof
demonstrates the speed O(n3) using a layer ranking function (compare Section 4.2.7).
Intuitively, this step argues that all non-silent transitions “make progress” and that it is
always possible to make progress until the computation is complete. In a second step,
we show that progress is not only possible but likely, yielding the speed bound O(n2).

We will now illustrate the speed of the resulting protocols via the (slightly simplified)
protocol that is synthesized for the flock-of-birds task. Essentially, the protocol is equiv-
alent to the slow protocol of Example 17 (and Figure 5.2) without down-transitions:

53



5 Synthesis of Population Protocols

Example 19 (A Fast and Succinct Flock-of-Birds Protocol). Assume that we have a flock
with an unknown number of birds. Each bird has a sensor that detects if it is “sick” (1) or
“healthy” (0). We will now give a family of fast and succinct population protocols that computes
if the number of sick birds is at least 2d for some parameter d ∈N.

Q
def
= {0, 1, 2, 4, 8 . . . , 2d−1, 2d} I

def
= {0, 1} O(s)

def
= (s = 2d)

Note that the number of states is d + 1 = O(|φ|), i.e., the protocol is succinct. There are two
types of transitions:

upi : 2i, 2i 7→ 2i+1, 0 for every 0 ≤ i ≤ d

truex : 2d, x 7→ 2d, 2d for every x ∈ Q

Intuitively, the up-transitions combine the information of two agents with value 2i, produc-
ing an agent with value 2i+1 and an agent with no value. The true-transitions propagate the
information that there are 2d sick birds.

The protocol is correct because if there are at least 2d sick birds, then it is possible to accu-
mulate that value in a single agent via a sequence of up-transitions. At that point, the true-
transitions lead to the correct consensus.

To understand why the protocol is fast, we will analyze its worst-case input: a flock of n≫ 2d

birds with exactly 2d sick birds and a large number of n − 2d healthy birds. For the protocol
to reach the right consensus, a single agent needs to collect all information and reach state 2d.
Until this happens, there always is a pair of agents that can interact via an up-transition. This
pair is chosen with probability at least 1

n2 . As there are 2d sick birds, there will be at most 2d − 1
up-transitions. Thus, the expected number of interactions is O((2d − 1)n2) = O(n2).
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6 Chemical Reaction Networks

In this chapter, we introduce the chemical reaction network (CRN) model. We begin
with a high-level explanation to give a first intuition, followed by a comparison to the
closely-related model of population protocols from Chapter 3. We give a formal defini-
tion of chemical reaction networks, but we refer to [Bri19] for more details.

Chemical reaction networks model the stochastic interactions of molecules that in-
teract according to chemical reactions. They are widely used to model and analyze
real-world stochastic systems and have many applications, such as in biochemistry
[CBH+09], epidemiology [LMV22], and molecular programming [SSW10]. The model
is closely related to population protocols: Similar to agents that change their state ac-
cording to transitions, molecules in chemical reaction networks change species via reac-
tions.

Example 20 (A chemical reaction network).

2H2 + O2 −→ 2H2O
C + O2 −→ CO2

6CO2 + 6H2O −→ C6H12O6 + 6O2

This chemical reaction network has six species: oxygen (O2), hydrogen (H2), water (H2O),
carbon (C), carbon dioxide (CO2), and glucose (C6H12O6). In the first two combustion reac-
tions, oxygen reacts with hydrogen to produce water or with carbon to produce carbon dioxide.
The third reaction describes the process of photosynthesis, where water and carbon dioxide are
converted to glucose and oxygen.

Molecules do not need to be described using chemical nomenclature. Instead, they can
have abstract names like in the predator-prey system.

Example 21 (Predator Prey). The predator-prey chemical reaction network [Gil77] has two
species: PRED and PREY. There are three reactions:

rep : PREY
1·PREY−−−−−−−−−→ 2 · PREY

eat : PRED + PREY
0.005·PRED·PREY−−−−−−−−−→ 2 · PRED

starve : PRED
1·PRED−−−−−−−−−→ ∅

The first reaction allows a PREY molecule to reproduce, resulting in two PREY molecules. The
second reaction describes the predation process, where a predator consumes a prey, leading to a
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6 Chemical Reaction Networks

decrease in the PREY population by one and an increase in the PRED population by one. The
third reaction models the gradual decline of predators, possibly due to factors such as starva-
tion. Each reaction has a propensity function that determines the speed of the reaction at the
current state. We describe its effect below. A simulation of the predator-prey system is shown in
Figure 6.1.

Figure 6.1: Simulation of the predator-prey system generated with the stochastic simulation al-
gorithm (SSA). The two species oscillate in an anti-cyclic pattern until one of them
dies out.

6.1 Comparison with Population Protocols

We will explain the major differences between population protocols and chemical reac-
tion networks.

Variable Number of Molecules. While a population protocol works with an arbitrary
number of initial agents, this number stays constant during an execution. This is a re-
sult of the fact that each transition consumes two agents and produces two agents. In
contrast, chemical reactions do not have such a restriction and can have pre- and post-
sets of arbitrary size. This makes it possible to increase and decrease the total number
of molecules (compare reactions rep and starve). The amount of molecules can even
change by more than one and it is possible to have reactions with empty presets that
continuously produce molecules. The global state of a population protocol is referred
to as configuration and the number of reachable configurations is always finite. For a
chemical reaction network, the global state is simply called its state. Due to the poten-
tial unbounded growth of the number of molecules, the number of reachable states in
a chemical reaction network can be infinite.1

1Note that in nature, due to physical constraints, the number of molecules is actually bounded if either
the volume or the mass of the well-mixed solution is bounded.
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Continuous Time. In a stochastic population protocol, time is measured in occurred
interactions, i.e., the model behaves like a discrete-time Markov chain (DTMC). In con-
trast, a chemical reaction network uses continuous time, typically measured in seconds,
and behaves like a continuous-time Markov chain (CTMC). Specifically, each reaction
occurs at a different rate that may vary during an execution and is determined by a
propensity function f (s) that maps the current state s to a non-negative propensity. For
example, the propensity function of the reaction

eat : PRED + PREY
0.005·PRED·PREY−−−−−−−−−→ 2PRED

is the function f (s) def
= 0.005 · s(PRED) · s(PREY). If the predator-prey system is in state

s def
= H4× PRED, 20× PREYI, then the propensity of reaction eat is f (s) = 0.005 · 4 · 20 =

0.4. The time until an enabled reaction occurs is an independent exponential random
variable with a rate equal to the reaction’s propensity. In our example, the eat reaction
is enabled and has a rate of 0.4, i.e., we expect the next eat reaction to occur in 1

0.4 = 2.5
seconds.

Focus on Modeling. Population protocols are typically designed by humans in order
to achieve a goal, i.e., they are programmed to compute some formula. In contrast,
chemical reaction networks are primarily used to model stochastic systems with no in-
put or output. Consequently, research on chemical reaction networks typically focuses
on efficient techniques that help to predict their transient behavior.

6.2 Formal Definition

A CRN N = (Λ,R) is a pair of finite sets, where Λ is a set of species and R is a set of
reactions. A reaction τ ∈ R is a triple τ = (rτ, pτ, kτ), where rτ ∈ NΛ is the reactant
complex, pτ ∈ NΛ is the product complex, and kτ ∈ R>0 is the rate constant. We use
standard chemical notation to describe a reaction, e.g., a reaction τ1 = (HA, BI, H2 ·CI, 5)

is written as τ1 : A + B 5−→ 2 · C. The effect of τ is defined as ∆(τ) def
= pτ − rτ. A state

of CRN N is a multiset s ∈ NΛ that describes the copy number s(X) for each species
X ∈ Λ. A reaction τ = (rτ, pτ, kτ) can occur in s if s ≥ rτ, i.e., if there are enough
reactant molecules. This leads to the state s′ = s + ∆(τ), which we write as s τ−→ s′.

Under the assumption of mass action kinetics, the propensity function of a reaction
τ = (rτ, pτ, kτ) is:

fτ(s)
def
= kτ ∏

X∈Λ

(
s(X)

rτ(X)

)

Intuitively, the propensity counts the number of ways one can pick all molecules of
the reactant complex r from the available molecules in state s, and the rate constant kτ

represents the likelihood that the reaction occurs if they all meet. For other kinetics,
such as Michaelis-Menten and Hill, the propensity function can be defined differently.
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Thus, we usually give the full propensity function when describing a reaction, e.g., for

reaction τ1 = (HA, BI, H2 · CI, 5) we write τ1 : A + B 5·A·B−−−→ 2 · C.
The time-evolution of a chemical reaction network is governed by the Chemical Mas-

ter Equation (see [Gil92]) that leads to a (potentially infinite) discrete-space, continuous-
time Markov chain (CTMC) X(t) = (X1(t), X2(t), . . . , X|Λ|(t))t≥0. This CTMC describes
how the probability of the copy numbers of each species evolve in time. The transition
rate f (s, s′) from state s to state s′ in the CTMC is the sum of propensities of reactions
that lead from s to s′:

f (s, s′) def
= ∑

τ∈R
s

τ−→s′

fτ(s)

As we do not assume familiarity with CTMCs, we will now give a short explanation
of how this system behaves. The time until the next reaction occurs is an exponential
random variable with rate

f (s) def
= ∑

τ∈R
fτ(s)

This continuous random variable depends only on the current state and not on the
amount of time elapsed, i.e., it has no memory. The expected time for the next reaction
to occur is thus 1/ f (s). The probability that reaction τ ∈ R is the next reaction to occur
in s is fτ(s)/ f (s).

Example 22 (CTMC for Predator Prey). Recall the three reactions of the predator-prey sys-
tem:

rep : PREY
1·PREY−−−−−−−−−→ 2 · PREY

eat : PRED + PREY
0.005·PRED·PREY−−−−−−−−−→ 2 · PRED

starve : PRED
1·PRED−−−−−−−−−→ ∅

If the system is in state s
def
= H4× PRED, 20× PREYI, then all three reactions can occur and

their propensities are:

frep(s) = 1 · s(PREY) = 20
feat(s) = 0.005 · s(PRED) · s(PREY) = 0.005 · 4 · 20 = 0.4

fstarve(s) = 1 · s(PRED) = 4

The total propensity is 20 + 4 + 0.4 = 24.4, i.e., we expect the next reaction to occur in
1/24.4 ≈ 0.041 seconds. The probabilities for the next reaction are 20/24.4 ≈ 82% for “rep”,
0.4/24.4 ≈ 1.6% for “eat”, and 4/24.4 ≈ 16.4% for “starve”.
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6.3 Stochastic Simulation

Gillespie’s widely used stochastic simulation algorithm (SSA) [Gil77] produces statis-
tically correct trajectories of the given CRN, i.e., sampled according to the underlying
CTMC. As shown in Algorithm 3, SSA repeatedly applies one reaction at a time while
keeping track of the elapsed time. Intuitively, each step of the algorithm is similar to
the process described in Example 22.

Algorithm 3 Gillespie’s (direct) stochastic simulation algorithm

1: function SIMULATE(stateinitial, timeend)
2: s := stateinitial
3: time := 0
4: while time < timeend do
5: evaluate propensities fτ(s) for each τ ∈ R and compute their sum f (s)
6: if f (s) = 0 then ▷ No reaction can occur
7: time := timeend
8: else
9: sample ∆t using exponential distribution with rate f (s)

10: time := time + ∆t
11: choose reaction τ with probability fτ(s)/ f (s)
12: s := s− rτ + pτ

13: return (s, time)

6.3.1 Approximate Stochastic Simulation

A common way to speed up the simulation process is to apply multiple reactions at
once. For example, the τ-leaping approach [Gil01] assumes that propensities do not
change significantly within the time window τ. This makes it possible to sample the
number of occurrences oτ of each reaction τ using a Poisson distribution (see Algo-
rithm 4). It is important to note that τ-leaping is an approximate simulation tech-
nique because it does not sample the underlying CTMC exactly. See Section 7.7 for
an overview of approximate simulation approaches.
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Algorithm 4 τ-leaping algorithm

1: function SIMULATE(stateinitial, timeend, τ)
2: s := stateinitial
3: time := 0
4: while time < timeend do
5: evaluate propensities fτ(s) for each τ ∈ R and compute their sum f (s)
6: if f (s) == 0 then ▷ No reaction can occur
7: time := timeend
8: else
9: for all τ ∈ R do

10: sample oτ using Poisson distribution with rate τ · fτ(s)
11: statenext := statenext + oτ · ∆(τ)
12: time := time + τ

13: return (s, time)

6.4 Deterministic Simulation

While stochastic simulations try to capture the random fluctuations and discrete na-
ture of biological systems, deterministic simulations instead neglect any noise and treat
species as continuous variables. In this case, the CRN is evolved according to a set of or-
dinary differential equations (ODEs). The equations specify the derivative of a species
X ∈ Λ as follows:

dX
dt

= ∑
τ∈R

fτ · ∆(τ)(X)

While a deterministic simulation can be very efficient, it often does not capture the
behavior of the analyzed system, especially in systems with low copy numbers or mul-
tistability. Deterministic simulation is most beneficial when all copy numbers and the
impact of random fluctuation is minimal.

Example 23 (ODEs for Predator Prey). Recall the reactions of the predator-prey system:

rep : PREY
1·PREY−−−−−−−−−→ 2 · PREY

eat : PRED + PREY
0.005·PRED·PREY−−−−−−−−−→ 2 · PRED

starve : PRED
1·PRED−−−−−−−−−→ ∅

Under the assumption of no noise and continuous copy numbers, the system evolves according
to the following set of ordinary differential equations:

dPRED

dt
= 0.005 · PRED · PREY− PRED

dPREY

dt
= PREY− 0.005 · PRED · PREY
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6 Chemical Reaction Networks

A deterministic simulation of the system is shown in Figure 6.2. It oscillates indefinitely and
does not reflect that the system can die out like in the SSA simulation of Figure 6.1.

Figure 6.2: Deterministic simulation of the predator-prey system generated by solving a system
of ordinary differential equations (ODEs). The two species oscillate indefinitely in an
anti-cyclic pattern. This is not consistent with the accurate simulation in Figure 6.1.

6.5 Simulation-Based Analysis

By performing a large number of stochastic simulations, one can estimate properties of
a chemical reaction network. The process is best illustrated by the following example.

Example 24 (Transient Analysis of Predator Prey). Consider the predator-prey system of
Example 21 starting in initial state H200 · PRED, 200 · PREYI. The two species of the system
oscillate until one of the species dies out. In case the PREY species dies first (because the last
PREY got eaten), the PRED will starve and also die out and the system stays in HI. A simulation-
based analysis could run 100,000 simulations using SSA for 200 seconds. In approximately
36,000 simulations (or 36% of simulations), the system dies out because the last PREY was
eaten. Or in other words, if the system starts in H200 · PRED, 200 · PREYI, then more than
every third evolution dies within the first 200 seconds because the last PREY was eaten.
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Reaction Networks

In this chapter, we showcase our contributions to the field of chemical reaction network
analysis. It is worth noting that in Chapter 4, we explored the realm of population
protocol verification, encompassing both theoretical advancements and their practical
application. However, as chemical reaction networks primarily serve as models for
stochastic systems, our research in this chapter predominantly focuses on the efficient
prediction of system properties in practical settings.

A meaningful simulation-based analysis of chemical reaction networks requires a
large number of stochastic simulations. This can take numerous hours [HGK15], es-
pecially if the generation of a single simulation is slow. To make the simulation-based
analysis of chemical reaction networks more efficient, we introduce a novel approxi-
mate simulation technique called segmental simulation. The fundamental principles un-
derlying segmental simulation are as follows:

• Acceleration: Instead of applying one reaction at a time, like in SSA (see Sec-
tion 6.3), we apply multiple reactions at once by sampling a short trajectory called
a segment.

• Memoization1: To efficiently sample a segment for the current state of the system,
we reuse parts of previously generated SSA simulations.

• Abstraction: Simulations rarely visit the exact same state multiple times but be-
have similarly if the copy numbers of all species are similar. Thus, we split the
state space into regions, called abstract states, and reuse a segment that starts in
the current region.

Figure 7.1 visualizes how segmental simulation works. On the left, we see a representa-
tion of the memory. For each of the four abstract states, it contains three segments. Each
segment starts at the same concrete state in the abstract state’s center, called the repre-
sentative, and ends when it leaves the abstract state. These segments were previously
generated via SSA and effectively approximate the local dynamics of the system. On
the right of Figure 7.1, we see a segmental simulation starting at concrete state sinit. It
is generated by repeatedly choosing one of the saved segments for the current abstract
states and applying its effect to the current concrete state. Note that the segment also
has an effect on the elapsed time that is not visualized.

1As mentioned in the introduction, memoization is an optimization technique that stores results to avoid
recalculation, while memorization (with ‘r’) is the process of committing something to memory.
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Figure 7.1: Visualization of segmental simulation algorithm. (left) Four neighboring abstract
states are drawn as squares. Each abstract state is displayed with three segments that
start in their respective centers. Each segment is a sequence of reactions drawn as
dotted arrows. The difference between the endpoint and the starting point is called
a summary and is drawn in unbroken black. (right) A possible segmental simulation
is obtained by applying segments c, d, g, i, h, i, and l to the initial state sinit.

Algorithm 5 summarizes the basic scheme of abstraction-based segmental simula-
tion. It reuses and fills the memory, which potentially already contains segments that
were generated in previous simulations. As we simulate, we always compute the cur-
rent abstract state a (Line 4) and randomly choose which of the k segments for a will be
reused (Line 5). If the segment was already computed, we load it from memory (Line 7).
Otherwise, we generate a new segment starting at a’s representative r (Line 10) and
store it. Finally, we apply the chosen segment in Lines 12 and 13. Because the segment
may not start at the current state, we only apply the segment’s total effect on state and
time. To reduce memory consumption, we typically only save the effect of a segment
which we call its summary.

The following sections give more details about the segmental simulation approach.
We explain the population-based abstraction we use to divide the state space into ab-
stract states in Section 7.1. Section 7.2 contains a theoretical discussion of the two error
sources of this approximate simulation approach. We generalize segmental simulation
to improve both memory usage and performance in Section 7.3. In Section 7.4, we in-
troduce a new fully automatic hybrid simulation scheme that can be combined with
segmental simulation. An evaluation of the approach is given in Section 7.5. We in-
troduce SAQuaiA, a free and easy-to-use tool that implements segmental simulation,
in Section 7.6. Finally, Sections 7.7 and 7.8 give an overview of related work and open
research questions.
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Algorithm 5 Segmental Simulation

Require: memory (mapping from abstract state to list of segments; can contain data
from previous simulations)

1: function SIMULATE(state, timeend)
2: time := 0
3: while time < timeend do
4: a := ABSTRACTSTATE(state)
5: n := RANDOM({1, .., k}) ▷ Choose segment
6: if n ≤ |memory(a)| then ▷ Already exists?
7: segment := memory(a).GET(n) ▷ Reuse
8: else
9: r := REPRESENTATIVE(a) ▷ Lazy generation

10: segment := NEWSSASEGMENTFROM(r)
11: memory(a).ADD(segment)
12: state := state + segment.∆state ▷ Apply segment’s effect
13: time := time + segment.∆time

14: return (state, time)

7.1 Population-Level Abstraction

We will now explain the abstraction we use to divide the state space of the chemical
reaction network into regions we call abstract states. While a general abstraction can be
arbitrarily complex, we use a population-level abstraction that defines population levels
by partitioning every dimension into intervals. Effectively, this divides the state space
into hyper-rectangles.

Specifically, a population-level abstraction defines consecutive intervals for each di-
mension. Each interval is annotated with a representative that is part of the inter-
val. We write [x, y, z] with x ≤ y ≤ z to denote the interval containing the values
{x, x + 1, ..., z − 1, z} with representative y (e.g., [3, 4, 6] = {3, 4, 5, 6} with representa-
tive 4). An abstract state in a d-dimensional system is a hyper-rectangle that is described
by d intervals, one for each dimension. The representative of an abstract state is the con-
crete state that corresponds to the representatives of all its intervals. For example, the
abstract state in a two-dimensional system for intervals [3, 4, 6] and [11, 14, 18] contains
all concrete states (x, y) with 3 ≤ x ≤ 6 and 11 ≤ y ≤ 18 and has representative (4, 14).

The abstraction function for a given population-level abstraction maps each concrete
state to its abstract state denoted as the vector of levels. E.g., for the interval abstraction
in Table 7.1, the concrete state (16, 269) is mapped to abstract state (4, 10) because 16 is
in level 4 and 269 is in level 10.

Abstraction Suitable for Segmental Simulation. While in principle, one can use any
population-level abstraction for segmental simulation, inconsistencies such as negative
copy numbers, jumps over abstract states, and the application of disabled reactions can
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Table 7.1: Population-level abstraction for the predator-prey model. Note that this abstraction
uses the same intervals for both species, while in general, each dimension can have
different population levels.

level 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

min 0 1 3 6 11 19 31 49 76 117 179 272 442 622 937
rep 0 1 4 8 14 24 39 62 96 147 225 341 516 779 1173
max 0 2 5 10 18 30 48 75 116 178 271 441 621 936 1409

arise if we do not choose the abstraction carefully. Example 25 highlights all three of
these issues.

Example 25 (Inconsistencies Because of Unsuitable Abstraction). Consider the system
visualized in Figure 7.2 with a single reaction r : 2X → ∅ and the partitioning into three
abstract states a1 = [0, 0, 1], a2 = [2, 3, 4] and a3 = [5, 10, ∞]. The only possible segment
starting at the representative of a3 is the sequence 10 r−→ 8 r−→ 6 r−→ 4 leading to abstract state
a2. However, when we apply this segment to the concrete state 5 of the same abstract state, we
get 5 r−→ 3 r−→ 1 r−→ −1. This is incorrect, as negative copy numbers are reached. Furthermore,
when applying the same segment to the concrete state 7, we get 7 r−→ 5 r−→ 3 r−→ 1 reaching
abstract state a1. Although this is a feasible sequence of the system, this segmental step jumped
over the abstract state a2, effectively ignoring the local dynamics of a2.

#X 0 1 2 3 4 5 6 7 8 9 10 11 12
a1 a2 a3

#X 0 1 2 3 4 5 6 7 8 9 10 11 12

#X 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 7.2: Problematic segmental simulation steps because of an unsuitable abstraction with
three abstract states a1, a2, a3. Circles are concrete states. The representatives are big-
ger and black. (top) The solid arrow is a segment for a3 consisting of three reactions
drawn as dotted arrows. (middle) Applying the segment to concrete state 5 leads to
a negative copy number. (bottom) Applying the segment to concrete state 7 jumps
over a2.

To make sure that no inconsistencies occur, the abstraction used for segmental simula-
tion needs to satisfy some additional properties.
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A population-level abstraction is considered suitable for segmental simulation if apply-
ing any segment of a representative to any concrete state within the same abstract state

1. does not apply reactions that are disabled, and

2. does not lead to a non-neighboring abstract state.

Note, Property (1) implies that the same set of reactions is enabled in all concrete states
of an abstract state and negative copy numbers cannot be reached. Further, to ensure
that segmental simulation adequately approximates the dynamics of the system, it must
hold that the states within each abstract state emit a similar probability space of the
trajectories. Since propensity functions are continuous, this assumption holds for suffi-
ciently large abstract states [MMR+12; AAČ+21].

Exponential Population-Level Abstraction. In this work, we specifically employ the
exponential population-level abstraction, which is suitable for segmental simulation. This
abstraction uses intervals with sizes that grow exponentially. This results in small in-
tervals when the copy number is low and fluctuations play a crucial role. Conversely,
when the number of molecules is high and a single reaction has a relatively lower im-
pact, the exponential growth results in large intervals. To control the rate of interval
growth, we utilize a parameter c, referred to as the growth factor.

Let N = (Λ,R) be a CRN and c ∈ R≥1 be the growth factor. For each species s ∈ Λ,
we first compute ms = maxτ∈R(rτ) the highest multiplicity of s in the reactant complex
of any reaction. If s does not react, i.e., ms = 0, then we do not split the dimension
of s into multiple segments as the number of s-molecules is not important for reusing
segments.2 Otherwise, we add the intervals [0, 0, 0], [1, 1, 1],..., [ms−1, ms−1, ms−1] and
define the following intervals iteratively: After the interval i = [x, y, z] with x ≤ y ≤ z
and size |i| := z− x+ 1, we add the interval i′ = [x′, y′, z′] where x′ := z+ 1, y′ := z+ |i|,
and z′ := ⌈c · |i|⌉. Intuitively, the next interval starts after the previous interval, has the
desired size of ⌈c · |i|⌉, and its representative is the largest value that does not allow
jumps over the previous interval. Please note that the abstraction in Table 7.1 is an
exponential population-level abstraction with growth factor c = 1.5. In case we want
to force additional user-defined levels (e.g., for more precision in a certain range of copy
numbers), we can generate intervals using a similar (but more complicated) heuristic
or with a constraint solver.

7.2 Theoretical Accuracy

Segmental simulation has the following two error sources.

2For some applications, like measuring the accuracy in the abstract domain, it can be important to force
a partition by setting ms := max(ms, 1).
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Segment Distribution Approximation Error. By reusing a finite number of saved seg-
ments, we effectively sample an underapproximation of the actual segment distribution
starting at the representative of an abstract state. If the number of saved segments is
too small, the abstract might miss important local behavior or skew the probabilities of
events. However, the error decreases when the number of segments is increased and
vanishes in the limit.

Abstraction error. Recall that segmental simulation does not sample the segment dis-
tribution for the current state but instead samples the distribution for the representative
of the current abstract state. Because the propensities and thus the rates of reactions are
different for different states, this inherently introduces an error. The abstraction error is
reasonably small in practice as the segment distributions for states within one abstract
state are quite similar: Consider that within any abstract state, the propensity and thus
rate for a mass-action reaction varies by at most the factor cr where c is the growth fac-
tor of the exponential abstraction and r is the number of reactants. Decreasing the size
of abstract states decreases the abstract error, and it vanishes for c=1, where every state
corresponds to a different abstract state.

7.3 Generalized Segmental Simulation

Segmental simulation has two major limitations.

1. The memory requirements can be large, especially for systems with many dimen-
sions.

2. The generation of segments may take a prohibitively large amount of time, e.g., if
the copy numbers are large and the segments consist of many reactions.

We generalize the basic segmental simulation approach as shown in Algorithm 6 to
overcome these limitations.

Improving Memory Consumption. The memoization is managed by a general artifact
that approximates the segment distribution of abstract states. This makes it possible to
use more memory-efficient segment distribution approximations, such as the approxi-
mation explained by Figure 7.3. Furthermore, the artifact can dynamically adjust how
the available memory is used. For each segmental simulation step, there are three op-
tions:

1. The artifact can decide not to use memoization and instead evolve the system
normally (Line 6). This is useful if the memory is full or memoization for the
current abstract state is inefficient.

2. The artifact can decide to improve the segment distribution approximation of the
current abstract state by generating a new segment starting at the representative
(Line 8). This allows us to dynamically improve the local precision, e.g., if an
abstract state is visited a lot.
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Algorithm 6 Generalized Segmental Simulation

Require: arti f act (mapping from abstract state to segment distribution approximation;
can contain data from previous simulations), base (simulation technique for gener-
ating new segments)

1: function SIMULATE(state, timeend)
2: time := 0
3: while time < timeend do
4: a := ABSTRACTSTATE(state)
5: if arti f act.SHOULDIGNORE(a) then
6: segment := base.NEWSEGMENTFROM(state) ▷ No memoization
7: else if arti f act.SHOULDIMPROVE(a) then
8: r := REPRESENTATIVE(a) ▷ Improve local precision
9: segment := base.NEWSEGMENTFROM(r)

10: arti f act.IMPROVEAPPROXIMATION(a, segment)
11: else
12: segment := arti f act.SAMPLEAPPROXIMATIONOF(a) ▷ Speed up
13: state := state + segment.∆state ▷ Apply segment
14: time := time + segment.∆time

15: return (state, time)

≈

x7x1

x2
x1

Figure 7.3: A more memory-efficient segment distribution approximation. (left) Approxima-
tion of a segment distribution made up of 100 summaries. All summaries with the
same direction have the same color, e.g., there are 20 orange summaries in direction
(+1,+1) or northeast. (right) A very similar but more memory-efficient approxima-
tion with 30 summaries. For directions with many summaries, all but ten random
summaries were discarded. In order to keep the distribution similar, the weights of
those directions are increased. For example, in the northeast direction, the number
of summaries was halved but their weight doubled. Thus, choosing a segment in
this direction is still equally likely.
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3. The artifact can speed up the simulation by sampling from the segment distribu-
tion approximation of the current abstract state (Line 12).

An implementation of segmental simulation can dynamically decide for one of these
options by tracking statistics about each abstract state. These can include the mem-
ory consumption of the segment distribution approximation, the expected speedup of
using memoization in this region, and the frequency with which simulations visit the
abstract state.

Improving Performance. Instead of generating new segments via SSA, Algorithm 6
uses an abstract base simulator. This makes it possible to combine segmental simulation
with other approximate simulation methods, such as τ-leaping (see Section 6.3.1) or
hybrid simulation (see Section 7.7), in order to achieve even better performance.

7.4 Abstraction-Based Hybrid Simulation

We introduce a new hybrid simulation approach that seamlessly combines with seg-
mental simulation and allows to produce segments faster than SSA. It distinguishes
three reaction speeds which are evolved using different techniques: slow reactions are
simulated via SSA, medium reactions are simulated using τ-leaping and fast reactions
are treated as continuous and deterministic, allowing us to evolve them deterministi-
cally according to the underlying ODEs.

Reaction Classification. The speed classification cannot be done well a priori for the
whole system, since the copy numbers of species can vary a lot within a single simu-
lation. Therefore, the classification should depend on the actual state [HGK15]. Our
fully automatic reaction classification is done per abstract state. First, each species is
assigned a target classification according to the size of the interval in the corresponding
dimension. Typically, if the interval of a species is larger than 400, we classify as fast; if
it is only larger than 5, we classify as medium; and otherwise as slow. Then, we classify
each reaction according to the slowest species affected by the reaction. For example,
if the predator-prey system is in the abstract state with PRED interval [937, 1173, 1409]
and PREY interval [19, 24, 30], the target speed for PRED is fast and the target speed for

PREY is medium. The reaction PRED
1·PRED−−−→ ∅ affects only PRED and thus has a fast

speed. The reaction PRED + PREY
0.005·PRED·PREY−−−−−−−−−→ 2PRED affects both species and thus

has speed medium.

Hybrid Step. To perform one step of the hybrid simulation, we first determine the
time ∆t=min(∆tslow, ∆tmedium, ∆tfast) for the next hybrid simulation step. Here, ∆tslow
is the time of the next slow reaction according to SSA, ∆tmedium:=τ according to the
τ-leaping approach of [CGP06], and ∆t f ast is the time needed for the fast reactions to
change the abstract state according to the underlying ODEs (compare Section 6.4). Next,
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Figure 7.4: An abstraction-based hybrid simulation step starting in state s of an abstract state.
(left) For every speed, the effects are first calculated separately. (middle) Then, the
effects are combined, potentially leading out of the abstract state to state s′. (right) As
the combined effect was too large, the events are replayed in random order. Between
every discrete reaction, there is a continuous evolution. The first state outside of the
abstract state is s′′ ̸= s′.

we evolve the state according to the ODEs for fast reactions up to time ∆t. Finally,
we sample the discrete reactions that occur in this step and apply their effect. The
number of occurrences for medium reactions is determined by τ-leaping for τ := ∆t.
In case ∆t < ∆tSSA, the next slow reaction is too late and ignored. Otherwise, the next
slow reaction occurs and is sampled according to SSA.3 This process is illustrated in
Figure 7.4.

Overshooting. Our hybrid simulation needs to handle cases where a single hybrid
step is significantly larger than expected. This is typical whenever τ-leaping is used, as
it is unlikely but possible to sample very large values from the Poisson distributions.
This could lead to negative copy numbers. A common solution for these rare events
in τ-leaping is to discard the step and retry with a smaller τ. In our hybrid simulation
approach, we reclassify once we leave the abstract state. Thus, we also consider steps
too large if they do not stop right after the abstract state border. As this is quite common,
we do not discard the sampled step but replay all reactions in random order until we
have left the abstract state (see the right part of Figure 7.4).

7.5 Evaluation

We will evaluate three approximate simulation approaches: abstraction-based hybrid
simulation (HYB), segmental simulation (SEG), and their combination hybrid segmen-
tal simulation (HYBSEG). As case studies, we use the following models from the lit-
erature: (1.) predator prey (PP), a.k.a. Lotka-Volterra [Gil77], (2.) repressilator (RP)
[HGK15], (3.) toggle switch (TS) [HGK15], and (4.) viral infection (VI) [SYS+02]. Ta-
ble 7.2 gives a formal definition of each model. The models are challenging due to
stochasticity, multi-scale species populations, stiffness, and/or complicated transient

3The interaction between slow and medium reactions is analogous to critical and non-critical reactions
in [CGP06].
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Table 7.2: Definitions of models predator prey (PP), toggle switch (TS), repressilator (RP), and
viral infection (VI).

Species (2) PRED, PREY

Initial state (200× PRED, 200× PREY)
End time 200s

Reactions rep : PREY
1·PREY−−−−→ 2 · PREY

(3) eat : PRED + PREY
0.005·PRED·PREY−−−−−−−−−→ 2 · PRED

starve : PRED
1·PRED−−−−→ ∅

Predator Prey (PP)

Species (6)
Initial state
End time

Reactions r0 : ∅ 1−→ MA r7 : MB + SA 20·MB·SA−−−−−→ SA

(14) r1 : ∅ 1−→ MB r8 : MA + SB 20·MA·SB−−−−−→ SB

r2 : MA 0.1·MA−−−−→ ∅ r9 : PB 0.1·PB−−−→ ∅

r3 : MB 0.1·MB−−−→ ∅ r10 : SA 0.01·SA−−−−→ ∅

r4 : PA 0.1·PA−−−→ ∅ r11 : SB 0.01·SB−−−−→ ∅

r5 : MA 5·MA−−−→ SA r12 : SA 10·SA−−−→ SA + PA

r6 : MB 5·MB−−−→ SB r13 : SB 10·SB−−−→ SB + PB

Toggle Switch (TS)
MA, MB, SA, SB, PA, PB
∅
50000s

Species (6)
Initial state
End time

Reactions spawnA : ∅ 0.1−→ MA despawnC : MC 0.01·MC−−−−→ ∅

(15) spawnB : ∅ 0.1−→ MB degradeA : MA + PB 50·MA·PB−−−−−→ PB

spawnC : ∅ 0.1−→ MC degradeB : MB + PC 50·MB·PC−−−−−→ PC

prodA : MA 50·MA−−−→ MA + PA degradeC : MC + PA 50·MC·PA−−−−−→ PA

prodB : MB 50·MB−−−→ MB + PB dissolveA : PA 0.01·PA−−−−→ ∅

prodC : MC 50·MC−−−→ MC + PC dissolveB : PB 0.01·PB−−−−→ ∅

despawnA : MA 0.01·MA−−−−→ ∅ dissolveC : PC 0.01·PC−−−−→ ∅

despawnB : MB 0.01·MB−−−−→ ∅

Repressilator (RP)
MA, MB, MC, PA, PB, PC
(10× MA, 500× PA)
50000s

Species (4) DNA, RNA, P, V
Initial state (1× RNA)
End time 200s

Reactions d0 : DNA + P 1.125E−5·DNA·P−−−−−−−−−−→ V

(6) x : RNA 1000·RNA−−−−−−→ RNA + P

t : DNA 0.025·DNA−−−−−−→ DNA + RNA

p : RNA 1·RNA−−−−→ DNA + RNA

d2 : RNA 0.25·RNA−−−−−→ ∅

d5 : P 1.9985·P−−−−→ ∅

Viral Infection (VI)
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behavior. Therefore, they are commonly used to evaluate advanced numerical as well
as simulation methods.

The experiment was carried out on a machine with an Intel Core i7-11700K @ 3.60GHz
CPU and 8GB of RAM. We use our own competitive implementation of the direct SSA
method as a baseline that achieves between 1×106 and 7×106 reactions per second, de-
pending on the model. Segmental simulation has multiple hyper-parameters that im-
pact accuracy and performance. In this work, we choose to evaluate our method with
a population-level growth factor of 1.5 and 100 segments per abstract state. For a more
detailed discussion of hyper-parameters, see [HČK+22] or Appendix C.

7.5.1 Accuracy

For each model, we evaluate the accuracy of simulation techniques in two ways: First,
we present a qualitative accuracy evaluation by visually comparing simulations that
are plotted in Figure 7.5. Then, we perform a quantitative accuracy evaluation using
Table 7.3, which shows how model-specific properties are preserved.

Table 7.3: Accuracy evaluation of approximate simulation techniques after 104 simulations via
model-specific properties.

Model Property SSA HYB SEG HYBSEG
PP oscillation period: mean (s.d.) 7.1s (1.1s) 7.1s (1.1s) 6.9s (1.4s) 7.0s (1.3s)

oscillation PRED-peak: mean (s.d.) 500 (240) 530 (250) 420 (200) 450 (220)
die-out probability: 70.8% 86.7% 42.2% 57.4%

die-out reason: PRED, PREY 48%, 52% 48%, 52% 50%, 50% 52%, 48%
RP oscillation period: mean (s.d.) 2600s (240s) 2700s (240s) 2500s (340s) 2500s (320s)

oscillation PA-peak: mean (s.d.) 5.0e4 (1.4e4) 5.5e4 (1.1e4) 4.5e4 (1.5e4) 4.5e4 (1.5e4)
dominance (at 50000s, in %): A, B, C 23, 40, 37 45, 15, 40 35, 33, 32 36, 30, 33

TS switches per simulation: 1.9 (1.3) 2.0 (1.4) 1.0 (1.1) 1.0 (1.1)
P-peak: mean (s.d.) 1.2e4 (1.1e3) 1.2e4 (1.1e3) 1.3e4 (2.1e3) 1.3e4 (2.0e3)

dominance (at 50000s, in %): A, B 50, 50 49, 51 48, 52 46, 54
VI die-out probability: 20.3% 19.4% 19.6% 20.4%

DNA at 200sa: mean (s.d.) 174 (25) 173 (25) 170 (25) 169 (27)
RNA at 200sa: mean (s.d.) 17.3 (4.9) 17.3 (4.9) 16.9 (5.3) 16.7 (5.3)

P at 200sa: mean (s.d.) 8600 (2400) 8700 (2400) 8200 (2600) 8200 (2700)
V at 200sa: mean (s.d.) 2100 (630) 2100 (640) 2000 (640) 2000 (670)

aSimulations that die out are ignored.

Predator Prey. All simulations of Figure 7.5 show the expected anti-cyclic oscillation
between both species with varying amplitude. The simulation can end early if one of
the species dies out. All approximate simulation techniques closely match SSA’s mean
oscillation frequency of 7.1 seconds and standard derivation of 1.1 seconds. The die-
out behavior of the model is notoriously hard to preserve for approximate simulation
methods. While they all correctly predict that it is equally likely for either species to
die out first, they cannot correctly predict the number of runs that die in the first 200
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Figure 7.5: Visual comparison of simulation approaches: SSA, HYB, SEG, and HYBSEG. For
each model, the top row presents a single simulation, emphasizing the relations
among different species. The bottom row illustrates the stochasticity with multiple
trajectories for a single species.
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seconds. SSA tells us that the die-out probability should be 71%, but HYB overestimates
with 87%, and SEG (HYBSEG) underestimates with 43% (57%).

Repressilator. All approaches produce the expected alternating peaks of the three
P-species (see Figure 7.5). In a visual comparison, we find that all produced simula-
tions look very similar and are thus hard to distinguish. In a quantitative comparison,
we find that the average oscillation period of 2600s is matched by all approximate ap-
proaches. However, both SEG and HYBSEG predict slightly more variance in the oscil-
lation frequency. As a result, they also predict that it is equally like for either species to
be dominant at t=50000s while it is actually less likely for A to be the dominant species.
On the other hand, we find that HYB underestimates the variance of the PA-peaks as it
treats the large copy numbers as deterministic.

Toggle Switch. A qualitative comparison of simulation plots shows that all techniques
predict the expected switching of periods with A-species dominance and B-species
dominance. Visually, a few copy numbers (e.g., 11000 for P-species) are noticeably too
dominant in the segmental simulations. This is a result of a strong correlation between
the copy number of S- and P-species and the abstraction-based rounding. Similarly, we
find that segmental simulations contain, on average, only 1.0 switches compared to the
1.9 switches in SSA simulations. All techniques preserve the average peak height of
P-species between switches and correctly predict that both A-species and B-species are
equally likely to be dominant at t=50000s.

Viral Infection. We find that all approximate simulation approaches correctly predict
the typical behavior of the system: Initially, there is a small chance of 20% that the
system dies out. Otherwise, all species grow until they reach a level that they oscillate
around (see Figure 7.5). To quantify the accuracy, we compare the RNA distribution at
t=200s: SSA predicts a bi-modal distribution where 20.3% die out and the other cases
are distributed normally with a mean of 17.3 and a standard deviation of 4.9. HYB
matches the RNA distribution perfectly but with a slightly lower death percentage
(19.4%). The segmental simulation approaches match the death percentage better but
do have slightly worse accuracy for the RNA distribution.

Accuracy Conclusion. Our investigation reveals that both SEG and HYBSEG, being
approximate simulation techniques, introduce measurable inaccuracies. These tech-
niques can underestimate the likelihood of unlikely events, such as the switching in
TS, and struggle to capture sensitive transient properties, like the die-out behavior in
PP. Notably, similar inaccuracies are observed in the hybrid simulation results. This
suggests that segmental simulation exhibits accuracy comparable to other approximate
simulation techniques. However, we find that segmental simulation successfully pre-
serves key system dynamics, as evidenced by the visual similarity between its simula-
tions and SSA simulations. And, more importantly, it accurately predicts the majority
of model-specific quantities.
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7.5.2 Speedup

Recall that segmental simulation is based on reusing segments generated in previous
simulation runs. As such, it becomes faster with each subsequent simulation of the
system. This can be observed in Figure 7.6, which shows the speedup we achieve when
generating an increasing number of simulations with segmental simulation instead of
SSA. Typically, segmental simulation does not speed up the very first simulation as
the memory starts empty. However, for some models, segments can already be reused
in the first simulation, like in the oscillating TS model, where the speedup for the first
SSA-based segmental simulation is already 15x. The speedup grows rapidly during the
early simulations, when segments for the most important abstract states are generated,
and approaches a limit where segments are reused as much as possible.

Table 7.4: Average run-time of one SSA simulation and the relative speedup w.r.t. SSA when
computing 104 simulations with other methods.

. . . SSA . . . HYB
PP 0.013s 1.2x 46x 48x
RP 8.4s 24x 160x 500x
TS 21s 12x 280x 310x
VI 0.74s 68x 150x 3300x

Model SSA HYB
SEG using . . .

Table 7.4 shows the speedup factors for different simulation methods when generat-
ing 104 simulations. On its own, SEG already speeds up the simulation process signifi-
cantly. The lowest speedup is 46x for the PP model and the highest speedup is achieved
for TS with 280x. For models where hybrid simulation is effective, like TS, RP, and VI,
we can achieve even larger speedups by combining SEG with our abstraction-based
hybrid approach. In VI, the speedups of HYB and SEG on their own are 68x and 150x,
respectively, but the combination of both approaches results in a speedup of 3300x.

7.5.3 Memory

Segmental simulation, being a memoization approach, comes with the trade-off of in-
creased memory consumption in exchange for speedup. For our benchmarks, we ob-
served relatively modest memory requirements, as indicated in Table 7.5. Notably, by
utilizing the segment distribution approximation illustrated in Figure 7.3, it is possible
to reduce total memory consumption by approximately 65% to 85%.

Reusing Segments for Different Simulation Tasks. In the experiments described so
far, the memory of segmental simulation starts empty and is filled over time. The filled
memory can be understood as an artifact speeding up future segmental simulations of
the same model. This is the case even if future simulations start from a different initial
state or end at a different time. Consider the scenario depicted in Figure 7.7 where a
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Figure 7.6: Speedup achieved by segmental simulation over SSA when generating a given num-
ber of simulations.

Figure 7.7: Speedup per simulation task for a sequence of transient analyses in VI: (1) 1000 sim-
ulations, (2) 9000 simulations, (3) 10x longer simulation time, and (4) starting with a
different initial state (5 molecules of RNA). The speedup is significantly improved if
the memory between tasks is reused (w/ artifact) instead of emptied (w/o artifact).
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Table 7.5: Memory usage and the number of abstract states/segments in memory after 10.000
segmental simulations: with and without segment distribution approximation.

total in approxim. w/o approxim. w/ approxim.
PP 300 38,000 5,700 (15%) 2.6MB 390kB
RP 29,000 2.4E6 6.2E5 (26%) 230MB 61MB
TS 10,000 7.2E5 2.5E5 (35%) 69MB 24MB
VI 430 42,000 10,000 (24%) 3.5MB 840kB

Model
abstract
states

Segments Memory

user performs a series of transient analyses for the VI model: First, they compute 1000
simulations (Task 1), then they need 9000 more simulations to estimate the likelihood
of a rare event (Task 2), then they run the simulation ten times longer to make sure the
system is stable (Task 3), and finally they modify the initial state to analyze its impact on
the system (Task 4). If the memory is emptied between tasks (dashed line), we observe
the normal speedup increase per task. However, if the memory is reused between tasks
(solid line), then the initial speedup and final speedup per task are larger as less time is
spent on generating segments.

7.6 Tool: SAQuaiA

We implemented segmental simulation in the free tool SAQuaiA.4 In SAQuaiA, users
can easily create, simulate, and analyze chemical reaction networks using an intuitive
graphical user interface. This enables the rapid application of our segmental simula-
tion approach to novel systems. Furthermore, SAQuaiA offers a range of visualization
capabilities that help to interpret results.

Creating and Modifying Settings. A setting in SAQuaiA consists of a CRN, an initial
state, a final time, and a population-level abstraction. Users can create a new setting or
modify one of the many provided example settings. The current setting is displayed on
the left of the main window (see Figure 7.8), showing the species and reaction as lists
as well as the population levels as a table. The abstraction can be changed using the
population-growth factor or by adding custom levels.

Simulators. SAQuaiA implements six simulation approaches: SSA, our hybrid ap-
proach (HYB), segmental simulation using SSA (SEG) and using HYB (HYBSEG) as
well as a deterministic simulator (ODE) and a τ-simulation based on our hybrid ap-
proach (TAU). The user can quickly change between different approaches (see top right
of Figure 7.8), enabling a straightforward comparison between different simulation

4SAQuaiA stands for “Simulation & Abstraction-based Quantitative Analyzer”. The tool and its prede-
cessor SeQuaiA [ČCK20] are available at https://sequaia.model.in.tum.de.
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Figure 7.8: The tool SAQuaiA allows users to simulate and analyze chemical reaction networks.

techniques. Furthermore, the tool allows to modify the hyper-parameters of all ap-
proaches directly through the graphical user interface.

Simulation and Transient Analysis. There are two options to use the selected sim-
ulator for the current setting. The first option is to perform a single simulation. This
produces a full evolution of the system over the simulation period. The other option
is to perform a transient analysis. This performs a large number of simulations to ap-
proximate the transient distribution of the system. For each simulation in a transient
analysis, the result contains the final state as well as how long the simulation took. In
both use cases, a progress bar and a log displayed at the bottom of the interface pro-
vide real-time updates on the computation’s progress, keeping the user informed (see
Figure 7.8).

Segmental Simulation for Sequences of Tasks. SAQuaiA automatically reuses seg-
ments from previous analysis tasks to speed up subsequent queries. This makes it
possible to speed up sequences of analyses as described in Section 7.5.3. The memory
is only reset if the setting or simulator changes.
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Figure 7.9: SAQuaiA: Segmental simulation of the predator-prey system.

Figure 7.10: SAQuaiA: Comparing trajectories of multiple simulations.
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Figure 7.11: SAQuaiA: Comparing multiple transient distributions.

Figure 7.12: SAQuaiA: Speed comparison of different simulation techniques.
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Result Visualization. SAQuaiA can visualize results in multiple different ways:

• For a single simulation, the tool generates a plot displaying individual trajectories
for each species in the chemical reaction network (see Figure 7.9).

• Multiple simulations can be compared by plotting their trajectories for a specific
species, allowing for a visual comparison (see Figure 7.10).

• Transient analyses are compared by plotting the transient distributions they pre-
dict as histograms (see Figure 7.11).

• Comparing the run times of transient analyses makes it possible to visualize the
relative efficiency of different simulation approaches (see Figure 7.12).

In all visualizations, it is possible to choose between copy numbers (like in Figure 7.9) or
population levels (like in Figure 7.11). Additionally, SAQuaiA enables real-time visual-
ization of simulations and ongoing transient analyses, with plots that update regularly
to reflect the evolving data.

7.7 Related Work

Exact Stochastic Simulation. Gillespie introduced two versions of the stochastic sim-
ulation algorithm (SSA) [Gil77]: the direct method presented in Section 6.3 and the first
reaction method. In each simulation step and for each reaction, the first reaction method
generates a putative time at which that reaction occurs and then chooses the reaction
that occurs first. Both of these methods are exact in the sense that they produce tra-
jectories that are sampled according to the underlying CTMC of the system. Many
improvements to SSA have been proposed. The next reaction method by Gibson and
Bruck [GB00] improves on the first reaction method: Using a dependency graph, it
only updates propensities when necessary and it reuses putative times that are ordered
in a priority queue to determine the next reaction. The optimized version of the direct
method [CLP04] also uses a dependency graph for updating propensities and orders
reactions by their frequency in pre-simulations to improve the random selection of re-
actions. The sorting direct method [MPC+06] builds on the optimized direct method but
updates reaction frequencies on-the-fly. Rejection-based SSA [TPZ14] maintains a lower
and upper bound for the propensities of all reactions. In many cases, this makes it pos-
sible to sample the next reaction without calculating propensities but may result in a
small number of rejected samples. Stochastic simulation has been further accelerated
using parallel computing, for example, on clusters [CLM+05] and GPUs [KD12].

Approximate Stochastic Simulation. Next to these exact techniques that apply one
reaction at a time, approximate simulation techniques speed up the simulation process
by applying multiple reactions at once. One such technique is τ-leaping [Gil01] (see
Section 6.3.1), which assumes that propensities do not change significantly within the
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time window τ. This assumption makes it possible to sample the number of occur-
rences of each reaction using a Poisson distribution. The selection of the parameter τ
was addressed in multiple works such as [GP03], [CGP06], and [LYG+15]. The Chem-
ical Langevin method further approximates τ-leaping in cases where we expect many
occurrences of all reactions by replacing the Poisson distribution with a Normal dis-
tribution [Gil02]. Alternatively, various partitioning schemes have been explored that
address the computational challenges posed by fast and slow reactions [CGP04]. One
common approach is to approximate fast reactions using a quasi-steady-state assump-
tion [RA03; Gou05]. In hybrid simulations, slow and fast sub-networks are separated,
allowing to treat certain species as continuous variables and others as discrete [SK05].
The effectiveness and accuracy of these partitioning techniques heavily depend on the
appropriate assignment of species. Consequently, several strategies, including adap-
tive approaches, have been proposed to improve performance and accuracy [GAK15;
HGK15]. For surveys comparing multiple exact and approximate simulation tech-
niques, we refer to [Gil07] and [SRP+19].

Deep Learning. Recently, the analysis of chemical reaction networks has witnessed
the integration of deep learning methodologies to enhance scalability. Cairoli et al. in-
troduced a deep learning paradigm for this purpose [CCB21]. In their approach, a
generative adversarial network learns from a set of stochastic simulations to generate
trajectories that closely resemble the distribution of trajectories in the original CRN.
Gupta et al. expanded on this concept and developed an estimator that learns statistical
properties of the original CRN from simulations [GSK21]. However, these approaches
are limited by the computational overhead associated with the learning phase, which
typically requires a significant number of simulations of the original CRN that need to
be generated with other simulation techniques.

7.8 Open Research Questions

The memory requirements of segmental simulation grow exponentially with the num-
ber of dimensions. Therefore, it remains to be studied how the generalized segmental
simulation scheme of Section 7.3 can be best used to speed up the simulation of larger
systems. In these cases, it is important that segmental simulation’s memory is adap-
tive, i.e., that used memory can be repurposed when the memory is full. Otherwise, a
change in the approximation of some abstract state’s behavior could render large parts
of the memory ineffective, for example, because some abstract states are no longer vis-
ited.

In addition to SAQuaiA, several other tools exist that support stochastic simula-
tion, including COPASI [HSG+06], Stochkit [SWR+11], iBioSim [MBJ+09], and CER-
ENA [KFR+16]. Integrating segmental simulation into these tools would serve to in-
crease awareness of this new technique and facilitate fair and straightforward com-
parisons with other approximate simulation approaches. Furthermore, the integration
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would likely result in even faster simulations, as segmental simulation could leverage
the highly optimized versions of the SSA algorithm already present in these tools.

A comprehensive theoretical analysis of the approximation error in segmental simu-
lation would help to understand its suitability for various scenarios. The establishment
of a formal error bound, similar to the error bound found in τ-leaping, would provide
a robust measure of the algorithm’s accuracy, further bolstering confidence in its effec-
tiveness.

The large speedups achieved by segmental simulation make it interesting for param-
eter estimation. For instance, in systems where a rate constant is unknown but transient
behavior is known, it may be possible to predict the parameter’s value using a binary
search approach, leveraging segmental simulation’s ability to rapidly verify transient
behavior. A more involved strategy might first run a segmental transient analysis for
two extreme values of a parameter and then estimate the behavior of the system for
other values by interpolating the segment distribution approximations in each abstract
state.
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ity in Population Protocols”. In: Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing. PODC ’15. Donostia-San Sebastián,
Spain: Association for Computing Machinery, 2015, pp. 47–56. DOI: 10.
1145/2767386.2767429 (cited on pages 3, 16, 38, 39).

[Ang87] Dana Angluin. “Learning regular sets from queries and counterexam-
ples”. In: Information and Computation 75.2 (1987), pp. 87–106. DOI: 10 .
1016/0890-5401(87)90052-6 (cited on page 44).

[AR09] James Aspnes and Eric Ruppert. “An Introduction to Population Proto-
cols”. In: Middleware for Network Eccentric and Mobile Applications. Ed. by
Benoı̂t Garbinato, Hugo Miranda, and Luı́s Rodrigues. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 97–120. DOI: 10.1007/978-3-540-
89707-1_5 (cited on pages 3, 8).

[Ari85] Aristotle. Complete Works of Aristotle, Volume 2. The Revised Oxford Transla-
tion. Ed. by Jonathan Barnes. Princeton: Princeton University Press, 1985.
DOI: 10.1515/9781400835850 (cited on page 1).

[ARZ+15] Benjamin Aminof, Sasha Rubin, Florian Zuleger, and Francesco Spegni.
“Liveness of Parameterized Timed Networks”. In: Automata, Languages,
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[CO22] Wojciech Czerwiński and Łukasz Orlikowski. “Reachability in Vector Ad-
dition Systems is Ackermann-complete”. In: 2021 IEEE 62nd Annual Sym-
posium on Foundations of Computer Science (FOCS). 2022, pp. 1229–1240.
DOI: 10.1109/FOCS52979.2021.00120 (cited on pages 16, 25).

[CTT+04] Edmund Clarke, Muralidhar Talupur, Tayssir Touili, and Helmut Veith.
“Verification by Network Decomposition”. In: CONCUR 2004 - Concur-
rency Theory. Ed. by Philippa Gardner and Nobuko Yoshida. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2004, pp. 276–291. DOI: 10.1007/
978-3-540-28644-8_18 (cited on page 43).

[DA94] René David and Hassane Alla. “Petri nets for modeling of dynamic sys-
tems: A survey”. In: Automatica 30.2 (1994), pp. 175–202. DOI: 10.1016/
0005-1098(94)90024-8 (cited on page 3).

[DE95] Jorg Desel and Javier Esparza. Free choice Petri nets. 40. Cambridge univer-
sity press, 1995. DOI: 10.1017/CBO9780511526558 (cited on page 30).

89

https://doi.org/10.1063/1.2159468
https://doi.org/10.23919/FMCAD.2017.8102244
https://doi.org/10.1007/978-3-030-25540-4_28
https://doi.org/https://doi.org/10.1002/0471756504.ch10
https://doi.org/https://doi.org/10.1002/0471756504.ch10
https://doi.org/10.1063/1.1778376
https://doi.org/10.1007/978-3-642-16023-3_19
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1007/978-3-540-28644-8_18
https://doi.org/10.1007/978-3-540-28644-8_18
https://doi.org/10.1016/0005-1098(94)90024-8
https://doi.org/10.1016/0005-1098(94)90024-8
https://doi.org/10.1017/CBO9780511526558


Bibliography
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vendu K. Lahiri and Chao Wang. Cham: Springer International Publishing,
2020, pp. 372–397. DOI: 10.1007/978-3-030-53291-8_20

Summary. We present a sound and complete method for verifying population pro-
tocols using Presburger stage graphs. Presburger stage graphs formally describe the
computation of population protocols as a series of stages that correspond to irreversible
changes in the system state. As such, they can act as a witness for liveness properties
like correctness that can be checked independently. Further, we show that if a popu-
lation protocol is correct, then there is a Presburger stage graph that proves this. Al-
though this yields an algorithm for verifying arbitrary population protocols, it is not
very efficient due to the high theoretical complexity of the verification problem. Thus,
we introduce an incomplete but efficient procedure that constructs Presburger stage
graphs that can verify many population protocols from the literature. We evaluate our
approach on a large number of population protocols and show that it can verify in-
stances with many states and transitions.

Contributions of thesis author. The author played a pivotal role in the composition
and revision of the manuscript. They actively participated in joint discussions and
contributed significantly to the development of the theoretical results presented in the
paper. Noteworthy individual contributions include the creation of an efficient verifica-
tion algorithm, extensive exploration for the necessary heuristics, providing a compre-
hensive algorithm description, as well as implementing and evaluating the approach
on a wide range of benchmarks.
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Abstract. We present a sound and complete method for the verification
of qualitative liveness properties of replicated systems under stochastic
scheduling. These are systems consisting of a finite-state program, exe-
cuted by an unknown number of indistinguishable agents, where the next
agent to make a move is determined by the result of a random experi-
ment. We show that if a property of such a system holds, then there is
always a witness in the shape of a Presburger stage graph: a finite graph
whose nodes are Presburger-definable sets of configurations. Due to the
high complexity of the verification problem (non-elementary), we intro-
duce an incomplete procedure for the construction of Presburger stage
graphs, and implement it on top of an SMT solver. The procedure makes
extensive use of the theory of well-quasi-orders, and of the structural the-
ory of Petri nets and vector addition systems. We apply our results to a
set of benchmarks, in particular to a large collection of population pro-
tocols, a model of distributed computation extensively studied by the
distributed computing community.

Keywords: Parameterized verification · Liveness · Stochastic systems

1 Introduction

Replicated systems consist of a fully symmetric finite-state program executed by
an unknown number of indistinguishable agents, communicating by rendez-vous
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or via shared variables [14,16,41,46]. Examples include distributed protocols and
multithreaded programs, or abstractions thereof. The communication graph of
replicated systems is a clique. They are a special class of parameterized systems,
i.e., infinite families of systems that admit a finite description in some suitable
modeling language. In the case of replicated systems, the (only) parameter is
the number of agents executing the program.

Verifying a replicated system amounts to proving that an infinite family of
systems satisfies a given property. This is already a formidable challenge, made
even harder by the fact that we want to verify liveness (more difficult than safety)
against stochastic schedulers. Loosely speaking, stochastic schedulers select the
set of agents that should execute the next action as the result of a random
experiment. Stochastic scheduling often appears in distributed protocols, and
in particular also in population protocols—a model much studied in distributed
computing with applications in computational biology1—that supplies many of
our case studies [9,58]. Under stochastic scheduling, the semantics of a replicated
system is an infinite family of finite-state Markov chains. In this work, we study
qualitative liveness properties, stating that the infinite runs starting at config-
urations of the system satisfying a precondition almost surely reach and stay
in configurations satisfying a postcondition. In this case, whether the property
holds or not depends only on the topology of the Markov chains, and not on the
concrete probabilities.

We introduce a formal model of replicated systems, based on multiset rewrit-
ing, where processes can communicate by shared variables or multiway synchro-
nization. We present a sound and complete verification method called Presburger
stage graphs. A Presburger stage graphs is a directed acyclic graphs with Pres-
burger formulas as nodes. A formula represents a possibly infinite inductive set
of configurations, i.e., a set of configurations closed under reachability. A node S
(which we identify with the set of configurations it represents) has the following
property: A run starting at any configuration of S almost surely reaches some
configuration of some successor S ′ of S, and, since S ′ is inductive, get trapped in
S ′. A stage graph labels the node S with a witness of this property in the form
of a Presburger certificate, a sort of ranking function expressible in Presburger
arithmetic. The completeness of the technique, i.e., the fact that for every prop-
erty of the replicated system that holds there exists a stage graph proving it,
follows from deep results of the theory of vector addition systems (VASs) [52–54].

Unfortunately, the theory of VASs also shows that, while the verification
problems we consider are decidable, they have non-elementary computational
complexity [33]. As a consequence, verification techniques that systematically
explore the space of possible stage graphs for a given property are bound to be
very inefficient. For this reason, we design an incomplete but efficient algorithm
for the computation of stage graphs. Inspired by theoretical results, the algorithm
combines a solver for linear constraints with some elements of the theory of well-
structured systems [2,39]. We report on the performance of this algorithm for a
large number of case studies. In particular, the algorithm automatically verifies

1 Under the name of chemical reaction networks.
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many standard population protocols described in the literature [5,8,20,22,23,
28,31], as well as liveness properties of distributed algorithms for leader election
and mutual exclusion [3,40,42,44,50,59,61,64].

Related Work. The parameterized verification of replicated systems was first
studied in [41], where they were modeled as counter systems. This allows one to
apply many efficient techniques [11,24,37,47]. Most of these works are inherently
designed for safety properties, and some can also handle fair termination [38],
but none of them handles stochastic scheduling. To the best of our knowledge,
the only works studying parameterized verification of liveness properties under
our notion of stochastic scheduling are those on verification of population proto-
cols. For fixed populations, protocols can be verified with standard probabilistic
model checking [13,65], and early works follow this approach [28,31,60,63]. Sub-
sequently, an algorithm and a tool for the parameterized verification of popula-
tion protocols were described in [21,22], and a first version of stage graphs was
introduced in [23] for analyzing the expected termination time of population pro-
tocols. In this paper we overhaul the framework of [23] for liveness verification,
drawing inspiration from the safety verification technology of [21,22]. Compared
to [21,22], our approach is not limited to a specific subclass of protocols, and
captures models beyond population protocols. Furthermore, our new techniques
for computing Presburger certificates subsume the procedure of [22]. In compar-
ison to [23], we provide the first completeness and complexity results for stage
graphs. Further, our stage graphs can prove correctness of population protocols
and even more general liveness properties, while those of [23] can only prove
termination. We also introduce novel techniques for computing stage graphs,
which compared to [23] can greatly reduce their size and allows us to prove more
examples correct.

There is also a large body of work on parameterized verification via cut-
off techniques: one shows that a specification holds for any number of agents
iff it holds for any number of agents below some threshold called the cutoff
(see [6,26,30,34,46], and [16] for a comprehensive survey). Cut-off techniques
can be applied to systems with an array or ring communication structure, but
they require the existence and effectiveness of a cutoff, which is not the case
in our setting. Further parameterized verification techniques are regular model
checking [1,25] and automata learning [7]. The classes of communication struc-
tures they can handle are orthogonal to ours: arrays and rings for regular model
checking and automata learning, and cliques in our work. Regular model checking
and learning have recently been employed to verify safety properties [29], live-
ness properties under arbitrary schedulers [55] and termination under finitary
fairness [51]. The classes of schedulers considered in [51,55] are incomparable to
ours: arbitrary schedulers in [55], and finitary-fair schedulers in [51]. Further,
these works are based on symbolic state-space exploration, while our techniques
are based on automatic construction of invariants and ranking functions [16].
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2 Preliminaries

Let N denote {0, 1, . . .} and let E be a finite set. A unordered vector over E is
a mapping V : E → Z. In particular, a multiset over E is an unordered vector
M : E → N where M(e) denotes the number of occurrences of e in M . The sets
of all unordered vectors and multisets over E are respectively denoted ZE and
NE . Vector addition, subtraction and comparison are defined componentwise.
The size of a multiset M is denoted |M | =

∑
e∈E M(e). We let E〈k〉 denote the

set of all multisets over E of size k. We sometimes describe multisets using a
set-like notation, e.g.M = �f, g, g� or equivalently M = �f, 2 · g� is such that
M(f) = 1, M(g) = 2 and M(e) = 0 for all e �∈ {f, g}.

Presburger Arithmetic. Let X be a set of variables. The set of formulas of Pres-
burger arithmetic over X is the result of closing atomic formulas, as defined in
the next sentence, under Boolean operations and first-order existential quan-
tification. Atomic formulas are of the form

∑k
i=1 aixi ∼ b, where ai and b are

integers, xi are variables and ∼ is either < or ≡m, the latter denoting the con-
gruence modulo m for any m ≥ 2. Formulas over X are interpreted on NX . Given
a formula φ of Presburger arithmetic, we let �φ� denote the set of all multisets
satisfying φ. A set E ⊆ NX is a Presburger set if E = �φ� for some formula φ.

2.1 Replicated Systems

A replicated system over Q of arity n is a tuple P = (Q,T ), where T ⊆⋃n
k=0 Q〈k〉 × Q〈k〉 is a transition relation containing the set of silent transitions⋃n
k=0{(x,x) | x ∈ Q〈k〉)}2. A configuration is a multiset C of states, which we

interpret as a global state with C(q) agents in each state q ∈ Q.
For every t = (x,y) ∈ T with x = �X1,X2, . . . , Xk� and y = �Y1, Y2, . . . , Yk�,

we write X1X2 · · · Xk 	→ Y1Y2 · · · Yk and let •t
def
= x, t•

def
= y and Δ(t)

def
= t• − •t.

A transition t is enabled at a configuration C if C ≥ •t and, if so, can occur,
leading to the configuration C ′ = C +Δ(t). If t is not enabled at C, then we say
that it is disabled. We use the following reachability notation:

C
t−→ C ′ ⇐⇒ t is enabled at C and its occurrence leads to C ′,

C −→ C ′ ⇐⇒ C
t−→ C ′ for some t ∈ T,

C
w−→ C ′ ⇐⇒ C = C0

w1−−→ C1 · · · wn−−→ Cn = C ′ for some C0, C1, . . . , Cn ∈ NQ,

C
∗−→ C ′ ⇐⇒ C

w−→ C ′ for some w ∈ T ∗.

Observe that, by definition of transitions, C −→ C ′ implies |C| = |C ′|, and

likewise for C
∗−→ C ′. Intuitively, transitions cannot create or destroy agents.

A run is an infinite sequence C0t1C1t2C2 · · · such that Ci
ti+1−−→ Ci+1 for

every i ≥ 0. Given L ⊆ T ∗ and a set of configurations C, we let

postL(C)
def
= {C ′ : C ∈ C, w ∈ L,C

w−→ C ′}, post∗(C)
def
= postT ∗(C),

preL(C)
def
= {C : C ′ ∈ C, w ∈ L,C

w−→ C ′}, pre∗(C)
def
= preT ∗(C).

2 In the paper, we will omit the silent transitions when giving replicated systems.
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Stochastic Scheduling. We assume that, given a configuration C, a probabilistic
scheduler picks one of the transitions enabled at C. We only make the following
two assumptions about the random experiment determining the transition: first,
the probability of a transition depends only on C, and, second, every transition
enabled at C has a nonzero probability of occurring. Since C

∗−→ C ′ implies
|C| = |C ′|, the number of configurations reachable from any configuration C is
finite. Thus, for every configuration C, the semantics of P from C is a finite-state
Markov chain rooted at C.

Example 1. Consider the replicated system P = (Q,T ) of arity 2 with states
Q = {AY,AN,PY,PN} and transitions T = {t1, t2, t3, t4}, where

t1 : AY AN 	→ PY PN, t2 : AY PN 	→ AY PY,

t3 : AN PY 	→ AN PN, t4 : PY PN 	→ PN PN.

Intuitively, at every moment in time, agents are either Active or Passive, and
have output Yes or No, which corresponds to the four states of Q. This system
is designed to satisfy the following property: for every configuration C in which
all agents are initially active, i.e., C satisfies C(PY) = C(PN) = 0, if C(AY) >
C(AN), then eventually all agents stay forever in the “yes” states {AY,PY}, and
otherwise all agents eventually stay forever in the “no” states {AN,PN}. �

2.2 Qualitative Model Checking

Let us fix a replicated system P = (Q,T ). Formulas of linear temporal logic
(LTL) on P are defined by the following grammar:

ϕ ::= φ | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ

where φ is a Presburger formula over Q. We look at φ as an atomic proposition
over the set NQ of configurations. Formulas of LTL are interpreted over runs of
P in the standard way. We abbreviate ♦ϕ ≡ true U ϕ and �ϕ ≡ ¬♦¬ϕ.

Let us now introduce the probabilistic interpretation of LTL. A configuration
C of P satisfies an LTL formula ϕ with probability p if Pr[C,ϕ] = p, where
Pr[C,ϕ] denotes the probability of the set of runs of P starting at C that satisfy
ϕ in the finite-state Markov chain rooted at C. The measurability of this set of
runs for every C and ϕ follows from well-known results [65]. The qualitative model
checking problem consists of, given an LTL formula ϕ and a set of configurations
I, deciding whether Pr[C,ϕ] = 1 for every C ∈ I. We will often work with the
complement problem, i.e., deciding whether Pr[C,¬ϕ] > 0 for some C ∈ I.

In contrast to the action-based qualitative model checking problem of [35],
our version of the problem is undecidable due to adding atomic propositions over
configurations (see the full version of the paper [19] for a proof):

Theorem 1. The qualitative model checking problem is not semi-decidable.

It is known that qualitative model checking problems of finite-state proba-
bilistic systems reduces to model checking of non-probabilistic systems under an
adequate notion of fairness.
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Definition 1. A run of a replicated system P is fair if for every possible step

C
t−→ C ′ of P the following holds: if the run contains infinitely many occurrences

of C, then it also contains infinitely many occurrences of C tC ′.

So, intuitively, if a run can execute a step infinitely often, it eventually will. It
is readily seen that a fair run of a finite-state transition system eventually gets
“trapped” in one of its bottom strongly connected components, and visits each
of its states infinitely often. Hence, fair runs of a finite-state Markov chain have
probability one. The following proposition was proved in [35] for a model slightly
less general than replicated systems; the proof can be generalized without effort:

Proposition 1 ([35, Prop. 7]). Let P be a replicated system, let C be a config-
uration of P, and let ϕ be an LTL formula. It is the case that Pr[C,ϕ] = 1 iff
every fair run of P starting at C satisfies ϕ.

We implicitly use this proposition from now on. In particular, we define:

Definition 2. A configuration C satisfies ϕ with probability 1, or just satisfies
ϕ, if every fair run starting at C satisfies ϕ, denoted by C |= ϕ. We let �ϕ�
denote the set of configurations satisfying ϕ. A set C of configurations satisfies
ϕ if C ⊆ �ϕ�, i.e., if C |= ϕ for every C ∈ C.

Liveness Specifications for Replicated Systems. We focus on a specific class of
temporal properties for which the qualitative model checking problem is decid-
able and which is large enough to formalize many important specifications. Using
well-known automata-theoretic technology, this class can also be used to verify
all properties describable in action-based LTL, see e.g. [35].

A stable termination property is given by a pair Π = (ϕpre, Φpost ), where
Φpost = {ϕ1

post, . . . , ϕ
k
post} and ϕpre, ϕ

1
post, . . . , ϕ

k
post are Presburger formulas over

Q describing sets of configurations. Whenever k = 1, we sometimes simply write
Π = (ϕpre, ϕpost). The pair Π induces the LTL property

ϕΠ
def
= ♦

k∨

i=1

�ϕi
post.

Abusing language, we say that a replicated system P satisfies Π if �ϕpre� ⊆ �ϕΠ�,
that is, if every configuration C satisfying ϕpre satisfies ϕΠ with probability 1.
The stable termination problem is the qualitative model checking problem for
I = �ϕpre� and ϕ = ϕΠ given by a stable termination property Π = (ϕpre, Φpost ).

Example 2. Let us reconsider the system from Example 1. We can formally spec-
ify that all agents will eventually agree on the majority output Yes or No. Let
ΠY = (ϕY

pre, ϕ
Y
post) and ΠN = (ϕN

pre, ϕ
N
post) be defined by:

ϕY
pre = (AY > AN ∧ PY + PN = 0), ϕY

post = (AN + PN = 0),

ϕN
pre = (AY ≤ AN ∧ PY + PN = 0), ϕN

post = (AY + PY = 0).

The system satisfies the property specified in Example 1 iff it satisfies ΠY and
ΠN. As an alternative (weaker) property, we could specify that the system always
stabilizes to either output by Π = (ϕY

pre ∨ ϕN
pre, {ϕY

post, ϕ
N
post}). �
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3 Stage Graphs

In the rest of the paper, we fix a replicated system P = (Q,T ) and a stable
termination property Π = (ϕpre, Φpost ), where Φpost = {ϕ1

post, . . . , ϕ
k
post}, and

address the problem of checking whether P satisfies Π. We start with some basic
definitions on sets of configurations.

Definition 3 (inductive sets, leads to, certificates)

– A set of configurations C is inductive if C ∈ C and C → C ′ implies C ′ ∈ C.
– Let C, C′ be sets of configurations. We say that C leads to C′, denoted C � C′,

if for all C ∈ C, every fair run from C eventually visits a configuration of C′.
– A certificate for C � C′ is a function f : C → N satisfying that for every

C ∈ C \ C′, there exists an execution C
∗−→ C ′ such that f(C) > f(C ′).

Note that certificates only require the existence of some executions decreasing
f , not for all of them to to decrease it. Despite this, we have:

Proposition 2. For all inductive sets C, C′ of configurations, it is the case that:
C leads to C′ iff there exists a certificate for C � C′.

The proof, which can be found in the full version [19], depends on two prop-
erties of replicated systems with stochastic scheduling. First, every configuration
has only finitely many descendants. Second, for every fair run and for every finite
execution C

w−→ C ′, if C appears infinitely often in the run, then the run contains
infinitely many occurrences of C

w−→ C ′. We can now introduce stage graphs:

Definition 4 (stage graph). A stage graph of P for the property Π is a
directed acyclic graph whose nodes, called stages, are sets of configurations sat-
isfying the following conditions:

1. every stage is an inductive set;
2. every configuration of �ϕpre� belongs to some stage;
3. if C is a non-terminal stage with successors C1, . . . , Cn, then there exists a

certificate for C � (C1 ∪ · · · ∪ Cn);
4. if C is a terminal stage, then C |= ϕi

post for some i.

The existence of a stage graph implies that P satisfies Π. Indeed, by con-
ditions 2–3 and repeated application of Proposition 2, every run starting at a
configuration of �ϕpre� eventually reaches a terminal stage, say C, and, by con-
dition 1, stays in C forever. Since, by condition 4, all configurations of C satisfy
some ϕi

post, after its first visit to C every configuration satisfies ϕi
post.

Example 3. Figure 1 depicts stage graphs for the system of Example 1 and the
properties defined in Example 2. The reader can easily show that every stage C is
inductive by checking that for every C ∈ C and every transition t ∈ {t1, . . . , t4}
enabled at C, the step C

ti−→ C ′ satisfies C ′ ∈ C. For example, if a configuration
satisfies AY > AN, so does any successor configuration. �
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AY > AN

Cert.: AY + AN

AY > 0, AN = 0
Cert.: PN

AN + PN = 0

Stage graph for ΠY

AY ≤ AN, PY = 0 ∨ AN + PN > 0
Cert.: AY + AN

AY = 0, AN > 0
Cert.: PY

AY + AN = 0, PN > 0
Cert.: PY

AY + PY = 0

Stage graph for ΠN

Fig. 1. Stage graphs for the system of Example 1.

The following proposition shows that stage graphs are a sound and complete
technique for proving stable termination properties.

Proposition 3. System P satisfies Π iff it has a stage graph for Π.

Proposition 3 does not tell us anything about the decidability of the sta-
ble termination problem. To prove that the problem is decidable, we introduce
Presburger stage graphs. Intuitively these are stage graphs whose stages and
certificates can be expressed by formulas of Presburger arithmetic.

Definition 5 (Presburger stage graphs)

– A stage C is Presburger if C = �φ� for some Presburger formula φ.
– A bounded certificate for C � C′ is a pair (f, k), where f : C → N and k ∈ N,

satisfying that for every C ∈ C \ C′, there exists an execution C
w−→ C ′ such

that f(C) > f(C ′) and |w| ≤ k.
– A Presburger certificate is a bounded certificate (f, k) satisfying f(C) =

n ⇐⇒ ϕ(C, n) for some Presburger formula ϕ(x, y).
– A Presburger stage graph is a stage graph whose stages and certificates are

all Presburger.

Using a powerful result from [36], we show that: (1) P satisfies Π iff it has a
Presburger stage graph for Π (Theorem 2); (2) there exists a denumerable set of
candidates for a Presburger stage graph for Π; and (3) there is an algorithm that
decides whether a given candidate is a Presburger stage graph for Π (Theorem 3).
Together, (1–3) show that the stable termination problem is semi-decidable. To
obtain decidability, we observe that the complement of the stable termination
problem is also semi-decidable. Indeed, it suffices to enumerate all initial config-
urations C |= ϕpre, build for each such C the (finite) graph GC of configurations
reachable from C, and check if some bottom strongly connected component B
of GC satisfies B �|= ϕi

post for all i. This is the case iff some fair run starting at
C visits and stays in B, which in turn is the case iff P violates Π.
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Theorem 2. System P satisfies Π iff it has a Presburger stage graph for Π.

We observe that testing whether a given graph is a Presburger stage graph
reduces to Presburger arithmetic satisfiability, which is decidable [62] and whose
complexity lies between 2-NEXP and 2-EXPSPACE [15]:

Theorem 3. The problem of deciding whether an acyclic graph of Presburger
sets and Presburger certificates is a Presburger stage graph, for a given stable
termination property, is reducible in polynomial time to the satisfiability problem
for Presburger arithmetic.

4 Algorithmic Construction of Stage Graphs

At the current state of our knowledge, the decision procedure derived from Theo-
rem 3 has little practical relevance. From a theoretical point of view, the TOWER-
hardness result of [33] implies that the stage graph may have non-elementary size
in the system size. In practice, systems have relatively small stage graphs, but,
even so, the enumeration of all candidates immediately leads to a prohibitive
combinatorial explosion.

For this reason, we present a procedure to automatically construct (not guess)
a Presburger stage graph G for a given replicated system P and a stable termi-
nation property Π = (ϕpre, Φpost ). The procedure may fail, but, as shown in the
experimental section, it succeeds for many systems from the literature.

The procedure is designed to be implemented on top of a solver for the exis-
tential fragment of Presburger arithmetic. While every formula of Presburger
arithmetic has an equivalent formula within the existential fragment [32,62],
quantifier-elimination may lead to a doubly-exponential blow-up in the size of
the formula. Thus, it is important to emphasize that our procedure never requires
to eliminate quantifiers: If the pre- and postconditions of Π are supplied as
quantifier-free formulas, then all constraints of the procedure remain in the exis-
tential fragment.

We give a high-level view of the procedure (see Algorithm 1), which uses
several functions, described in detail in the rest of the paper. The procedure
maintains a workset WS of Presburger stages, represented by existential Pres-
burger formulas. Initially, the only stage is an inductive Presburger overapprox-
imation PotReach(�ϕpre�) of the configurations reachable from �ϕpre� (PotReach
is an abbreviation for “potentially reachable”). Notice that we must necessarily
use an overapproximation, since post∗(�ϕpre�) is not always expressible in Pres-
burger arithmetic3. We use a refinement of the overapproximation introduced
in [22,37], equivalent to the overapproximation of [24].

In its main loop (lines 2–9), Algorithm 1 picks a Presburger stage S from
the workset, and processes it. First, it calls Terminal(S, Φpost ) to check if S is
terminal, i.e., whether S |= ϕi

post for some ϕi
post ∈ Φpost . This reduces to checking

3 This follows easily from the fact that post∗(ψ) is not always expressible in Presburger
arithmetic for vector addition systems, even if ψ denotes a single configuration [43].
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Algorithm 1: procedure for the construction of stage graphs.

Input: replicated system P = (Q, T ), stable term. property Π = (ϕpre, Φpost)
Result: a stage graph of P for Π

1 WS ← {PotReach(�ϕpre�)}
2 while WS �= ∅ do
3 remove S from WS

4 if ¬Terminal(S, Φpost) then
5 U ← AsDead(S)

6 if U �= ∅ then
7 WS ← WS ∪ {IndOverapprox(S, U)}
8 else
9 WS ← WS ∪ Split(S)

the unsatisfiability of the existential Presburger formula φ ∧ ¬ϕi
post, where φ is

the formula characterizing S. If S is not terminal, then the procedure attempts to
construct successor stages in lines 5–9, with the help of three further functions:
AsDead, IndOverapprox, and Split. In the rest of this section, we present the
intuition behind lines 5–9, and the specification of the three functions. Sections 5,
6 and 7 present the implementations we use for these functions.

Lines 5–9 are inspired by the behavior of most replicated systems designed by
humans, and are based on the notion of dead transitions, which can never occur
again (to be formally defined below). Replicated systems are usually designed to
run in phases. Initially, all transitions are alive, and the end of a phase is marked
by the “death” of one or more transitions, i.e., by reaching a configuration at
which these transitions are dead. The system keeps “killing transitions” until no
transition that is still alive can lead to a configuration violating the postcondi-
tion. The procedure mimics this pattern. It constructs stage graphs in which if
S ′ is a successor of S, then the set of transitions dead at S ′ is a proper superset
of the transitions dead at S. For this, AsDead(S) computes a set of transitions
that are alive at some configuration of S, but which will become dead in every
fair run starting at S (line 5). Formally, AsDead(S) returns a set U ⊆ Dead(S)
such that S |= ♦dead(U), defined as follows.

Definition 6. A transition of a replicated system P is dead at a configuration
C if it is disabled at every configuration reachable from C (including C itself).
A transition is dead at a stage S if it is dead at every configuration of S. Given
a stage S and a set U of transitions, we use the following notations:

– Dead(S): the set of transitions dead at S;
– �dis(U)�: the set of configurations at which all transitions of U are disabled;
– �dead(U)�: the set of configurations at which all transitions of U are dead.

Observe that we can compute Dead(S) by checking unsatisfiability of a
sequence of existential Presburger formulas: as S is inductive, we have Dead(S) =
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{t | S |= dis(t)}, and S |= dis(t) holds iff the existential Presburger formula
∃C : φ(C) ∧ C ≥ •t is unsatisfiable, where φ is the formula characterizing S.

The following proposition, whose proof appears in the full version [19], shows
that determining whether a given transition will eventually become dead, while
decidable, is PSPACE-hard. Therefore, Sect. 7 describes two implementations of
this function, and a way to combine them, which exhibit a good trade-off between
precision and computation time.

Proposition 4. Given a replicated system P, a stage S represented by an exis-
tential Presburger formula φ and a set of transitions U , determining whether
S |= ♦dead(U) holds is decidable and PSPACE-hard.

If the set U returned by AsDead(S) is nonempty, then we know that every
fair run starting at a configuration of S will eventually reach a configuration
of S ∩ �dead(U)�. So, this set, or any inductive overapproximation of it, can
be a legal successor of S in the stage graph. Function IndOverapprox(S, U)
returns such an inductive overapproximation (line 7). To be precise, we show in
Sect. 5 that �dead(U)� is a Presburger set that can be computed exactly, albeit in
doubly-exponential time in the worst case. The section also shows how to com-
pute overapproximations more efficiently. If the set U returned by AsDead(S) is
empty, then we cannot yet construct any successor of S. Indeed, recall that we
want to construct stage graphs in which if S ′ is a successor of S, then Dead(S ′)
is a proper superset of Dead(S). In this case, we proceed differently and try to
split S:

Definition 7. A split of some stage S is a set {S1, . . . ,Sk} of (not necessarily
disjoint) stages such that the following holds:

– Dead(Si) ⊃ Dead(S) for every 1 ≤ i ≤ k, and

– S =
⋃k

i=1 Si.

If there exists a split {S1, . . . ,Sk} of S, then we can let S1, . . . ,Sk be the
successors of S in the stage graph. Observe that a stage may indeed have a split.
We have Dead(C1 ∪C2) = Dead(C1)∩Dead(C2), and hence Dead(C1 ∪C2) may be
a proper subset of both Dead(C1) and Dead(C2):

Example 4. Consider the system with states {q1, q2} and transitions ti : qi 	→ qi

for i ∈ {1, 2}. Let S = {C | C(q1) = 0 ∨ C(q2) = 0}, i.e., S is the (inductive)
stage of configurations disabling either t1 or t2. The set {S1,S2}, where Si =
{C ∈ S | C(qi) = 0}, is a split of S satisfying Dead(Si) = {ti} ⊃ ∅ = Dead(S). �

The canonical split of S, if it exists, is the set {S ∩ �dead(t)� | t /∈ Dead(S)}.
As mentioned above, Sect. 5 shows that �dead(U)� can be computed exactly
for every U , but the computation can be expensive. Hence, the canonical split
can be computed exactly at potentially high cost. Our implementation uses an
underapproximation of �dead(t)�, described in Sect. 6.
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5 Computing and Approximating �dead(U)�
We show that, given a set U of transitions,

– we can effectively compute an existential Presburger formula describing the
set �dead(U)�, with high computational cost in the worst case, and

– we can effectively compute constraints that overapproximate or underapprox-
imate �dead(U)�, at a reduced computational cost.

Downward and Upward Closed Sets. We enrich N with the limit element ω
in the usual way. In particular, n < ω holds for every n ∈ N. An ω-configuration
is a mapping Cω : Q → N ∪ {ω}. The upward closure and downward closure
of a set Cω of ω-configurations are the sets of configurations ↑ Cω and ↓ Cω,
respectively defined as:

↑ Cω def
= {C ∈ NQ | C ≥ Cω for some Cω ∈ Cω},

↓ Cω def
= {C ∈ NQ | C ≤ Cω for some Cω ∈ Cω}.

A set C of configurations is upward closed if C = ↑ C, and downward closed if
C = ↓ C. These facts are well-known from the theory of well-quasi orderings:

Lemma 1. For every set C of configurations, the following holds:

1. C is upward closed iff C is downward closed (and vice versa);
2. if C is upward closed, then there is a unique minimal finite set of configurations

inf(C), called its basis, such that C = ↑ inf(C);
3. if C is downward closed, then there is a unique minimal finite set of ω-

configurations sup(C), called its decomposition, such that C = ↓ sup(C).

Computing �dead(U)� Exactly. It follows immediately from Definition 6 that
both �dis(U)� and �dead(U)� are downward closed. Indeed, if all transitions of
U are disabled at C, and C ′ ≤ C, then they are also disabled at C ′, and clearly
the same holds for transitions dead at C. Furthermore:

Proposition 5. For every set U of transitions, the (downward) decomposition
of both sup(�dis(U)�) and sup(�dead(U)�) is effectively computable.

Proof. For every t ∈ U and q ∈ •t, let Cω
t,q be the ω-configuration such that

Cω
t,q(q) = •t(q) − 1 and Cω

t,q(p) = ω for every p ∈ Q \ {q}. In other words, Cω
t,q

is the ω-configuration made only of ω’s except for state q which falls short from
•t(q) by one. This ω-configurations captures all configurations disabled in t due
to an insufficient amount of agents in state q. We have:

sup(�dis(U)�) = {Cω
t,q : t ∈ U, q ∈ •t}.

The latter can be made minimal by removing superfluous ω-configurations.
For the case of sup(�dead(U)�), we invoke [45, Prop. 2] which gives a proof for

the more general setting of (possibly unbounded) Petri nets. Their procedure is
based on the well-known backwards reachability algorithm (see, e.g., [2,39]). ��
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Since sup(�dead(U)�) is finite, its computation allows to describe �dead(U)�
by the following linear constraint4:

∨

Cω∈sup(�dead(U)�)

∧

q∈Q

[C(q) ≤ Cω(q)] .

However, the cardinality of sup(�dead(U)�) can be exponential [45, Remark for
Prop. 2] in the system size. For this reason, we are interested in constructing
both under- and over-approximations.

Overapproximations of �dead(U)�. For every i ∈ N, define �dead(U)�i as:

�dead(U)�0 def
= �dis(U)� and �dead(U)�i+1 def

= preT (�dead(U)�i) ∩ �dis(U)�.

Loosely speaking, �dead(U)�i is the set of configurations C such that every con-
figuration reachable in at most i steps from C disables U . We immediately have:

�dead(U)� =

∞⋂

i=0

�dead(U)�i.

Using Proposition 5 and the following proposition, we obtain that �dead(U)�i is
an effectively computable overapproximation of �dead(U)�.

Proposition 6. For every Presburger set C and every set of transitions U , the
sets preU (C) and postU (C) are effectively Presburger.

Recall that function IndOverapprox(S, U) of Algorithm 1 must return an
inductive overapproximation of �dead(U)�. Since �dead(U)�i might not be induc-
tive in general, our implementation uses either the inductive overapproxima-

tions IndOverapproxi(S, U)
def
= PotReach(S ∩ �dead(U)�i), or the exact value

IndOverapprox∞(S, U)
def
= S ∩ �dead(U)�. The table of results in the experimen-

tal section describes for each benchmark which overapproximation was used.

Underapproximations of �dead(U)�: Death Certificates. A death certifi-
cate for U in P is a finite set Cω of ω-configurations such that:

1. ↓ Cω |= dis(U), i.e., every configuration of ↓ Cω disables U , and
2. ↓ Cω is inductive, i.e., postT (↓ Cω) ⊆ ↓ Cω.

If U is dead at a set C of configurations, then there is always a certificate that
proves it, namely sup(�dead(U)�). In particular, if Cω is a death certificate for
U then ↓ Cω ⊆ �dead(U)�, that is, ↓ Cω is an underapproximation of �dead(U)�

Using Proposition 6, it is straightforward to express in Presburger arithmetic
that a finite set Cω of ω-configurations is a death certificate for U :

Proposition 7. For every k ≥ 1 there is an existential Presburger formula
DeathCertk(U, Cω) that holds iff Cω is a death certificate of size k for U .

4 Observe that if Cω(q) = ω, then the term “C(q) ≤ ω” is equivalent to “true”.
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6 Splitting a Stage

Given a stage S, we try to find a set Cω
1 , . . . , Cω

� of death certificates for transitions
t1, . . . , t� ∈ T \ Dead(S) such that S ⊆ ↓ Cω

1 ∪ · · · ∪ ↓ Cω
� . This allows us to split

S into S1, . . . ,S�, where Si
def
= S ∩ ↓ Cω

i .
For any fixed size k ≥ 1 and any fixed 	, we can find death certificates

Cω
1 , . . . , Cω

� of size at most k by solving a Presburger formula. However, the
formula does not belong to the existential fragment, because the inclusion check
S ⊆ ↓ Cω

1 ∪· · ·∪↓ Cω
� requires universal quantification. For this reason, we proceed

iteratively. For every i ≥ 0, after having found Cω
1 , . . . , Cω

i we search for a pair
(Ci+1, Cω

i+1) such that

(i) Cω
i+1 is a death certificate for some ti+1 ∈ T \ Dead(S);

(ii) Ci+1 ∈ S ∩ ↓ Cω
i+1 \ (↓ Cω

1 ∪ · · · ∪ ↓ Cω
i ).

An efficient implementation requires to guide the search for (Ci+1, Cω
i+1), because

otherwise the search procedure might not even terminate, or might split S into
too many parts, blowing up the size of the stage graph. Our search procedure
employs the following heuristic, which works well in practice. We only consider
the case k = 1, and search for a pair (Ci+1, C

ω
i+1) satisfying (i) and (ii) above,

and additionally:

(iii) all components of Cω
i+1 are either ω or between 0 and maxt∈T,q∈Q

•t(q) − 1;
(iv) for every ω-configuration Cω, if (Ci+1, C

ω) satisfies (i)–(iii), then Cω
i+1 ≤ Cω;

(v) for every pair (C,Cω), if (C,Cω) satisfies (i)–(iv), then Cω ≤ Cω
i+1.

Condition (iii) guarantees termination. Intuitively, condition (iv) leads to cer-
tificates valid for sets U ⊆ T \ Dead(S) as large as possible. So it allows us to
avoid splits that, loosely speaking, do not make as much progress as they could.
Condition (v) allows us to avoid splits with many elements because each element
of the split has a small intersection with S.

An example illustrating these conditions is given in the full version [19].

7 Computing Eventually Dead Transitions

Recall that the function AsDead(S) takes an inductive Presburger set S as input,
and returns a (possibly empty) set U ⊆ Dead(S) of transitions such that S |=
♦dead(U). This guarantees S � �dead(U)� and, since S is inductive, also S �
S ∩ �dead(U)�.

By Proposition 4, deciding if there exists a non-empty set U of transitions such
that S |= ♦dead(U) holds is PSPACE-hard, which makes a polynomial reduction to
satisfiability of existential Presburger formulas unlikely. So we design incomplete
implementations of AsDead(S) with lower complexity. Combining these imple-
mentations, the lack of completeness essentially vanishes in practice.

The implementations are inspired by Proposition 2, which shows that S �
�dead(U)� holds iff there exists a certificate f such that:

∀C ∈ S \ �dead(U)� : ∃C
∗−→ C ′ : f(C) > f(C ′). (Cert)
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To find such certificates efficiently, we only search for linear functions f(C) =∑
q∈Q a(q) · C(q) with coefficients a(q) ∈ N for each q ∈ Q.

7.1 First Implementation: Linear Ranking Functions

Our first procedure computes the existence of a linear ranking function.

Definition 8. A function r : S → N is a ranking function for S and U if for

every C ∈ S and every step C
t−→ C ′ the following holds:

1. if t ∈ U , then r(C) > r(C ′); and
2. if t /∈ U , then r(C) ≥ r(C ′).

Proposition 8. If r : S → N is a ranking function for S and U , then there
exists k ∈ N such that (r, k) is a bounded certificate for S � �dead(U)�.

Proof. Let M be the minimal finite basis of the upward closed set �dead(U)�.
For every configuration D ∈ M , let σD be a shortest sequence that enables some

transition of tD ∈ U from D, i.e., such that D
σD−−→ D′ tD−−→ D′′ for some D′, D′′.

Let k
def
= max{|σDtD| : D ∈ M}.

Let C ∈ S \ �dead(U)�. Since C ∈ �dead(U)�, we have C ≥ D for some

D ∈ M . By monotonicity, we have C
σD−−→ C ′ tD−−→ C ′′ for some configurations C ′

and C ′′. By Definition 8, we have r(C) ≥ r(C ′) > r(C ′′), and so condition (Cert)
holds. As |σDtD| ≤ k, we have that (r, k) is a bounded certificate. ��

It follows immediately from Definition 8 that if r1 and r2 are ranking func-

tions for sets U1 and U2 respectively, then r defined as r(C)
def
= r1(C) + r2(C)

is a ranking function for U1 ∪ U2. Therefore, there exists a unique maximal set
of transitions U such that S � �dead(U)� can be proved by means of a ranking
function. Further, U can be computed by collecting all transitions t ∈ Dead(S)
such that there exists a ranking function rt for {t}. The existence of a linear
ranking function rt can be decided in polynomial time via linear programming,
as follows. Recall that for every step C

u−→ C ′, we have C ′ = C + Δ(u). So, by
linearity, we have rt(C) ≥ rt(C

′) ⇐⇒ rt(C
′ − C) ≤ 0 ⇐⇒ rt(Δ(u)) ≤ 0.

Thus, the constraints of Definition 8 can be specified as:

a · Δ(t) < 0 ∧
∧

u∈Dead(S)

a · Δ(u) ≤ 0,

where a : Q → Q≥0 gives the coefficients of rt, that is, rt(C) = a · C, and

a · x
def
=

∑
q∈Q a(q) · x(q) for x ∈ NQ. Observe that a solution may yield a

function whose codomain differs from N. However, this is not an issue since we
can scale it with the least common denominator of each a(q).
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7.2 Second Implementation: Layers

Transitions layers were introduced in [22] as a technique to find transitions that
will eventually become dead. Intuitively, a set U of transitions is a layer if (1) no
run can contain only transitions of U , and (2) U becomes dead once disabled; the
first condition guarantees that U eventually becomes disabled, and the second
that it eventually becomes dead. We formalize layers in terms of layer functions.

Definition 9. A function 	 : S → N is a layer function for S and U if:

C1. 	(C) > 	(C ′) for every C ∈ S and every step C
t−→ C ′ with t ∈ U ; and

C2. �dis(U)� = �dead(U)�.

Proposition 9. If 	 : S → N is a layer function for S and U , then (	, 1) is a
bounded certificate for S � �dead(U)�.

Proof. Let C ∈ S \ �dead(U)�. By condition C2, we have C �∈ �dis(U)�. So there

exists a step C
u−→ C ′ where u ∈ U . By condition C1, we have 	(C) > 	(C ′), so

condition (Cert) holds and (	, 1) is a bounded certificate.

Let S be a stage. For every set of transitions U ⊆ Dead(S) we can construct a
Presburger formula lin-layer(U,a) that holds iff there there exists a linear layer
function for U , i.e., a layer function of the form 	(C) = a · C for a vector of
coefficients a : Q → Q≥0. Condition C1, for a linear function 	(C), is expressed
by the existential Presburger formula

lin-layer-fun(U,a)
def
=

∧

u∈U

a · Δ(u) < 0.

Condition C2 is expressible in Presburger arithmetic because of Proposition 5.
However, instead of computing �dead(U)� explicitly, there is a more efficient
way to express this constraint. Intuitively, �dis(U)� = �dead(U)� is the case if
enabling a transition u ∈ U requires to have previously enabled some transition
u′ ∈ U . This observation leads to:

Proposition 10. A set U of transitions satisfies �dis(U)� = �dead(U)� iff it
satisfies the existential Presburger formula

dis-eq-dead(U)
def
=

∧

t∈T

∧

u∈U

∨

u′∈U

•t + (•u � t•) ≥ •u′

where x � y ∈ NQ is defined by (x � y)(q)
def
= max(x(q) − y(q), 0) for x,y ∈ NQ.

This allows us to give the constraint lin-layer(U,a), which is of polynomial size:

lin-layer(U,a)
def
= lin-layer-fun(U,a) ∧ dis-eq-dead(U).
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7.3 Comparing Ranking and Layer Functions

The ranking and layer functions of Sects. 7.1 and 7.2 are incomparable in power,
that is, there are sets of transitions for which a ranking function but no layer
function exists, and vice versa. This is shown by the following two systems:

P1 = ({A,B,C}, {t1 : AB 	→ C C, t2 : A 	→ B, t3 : B 	→ A}),

P2 = ({A,B}, {t4 : A B 	→ A A, t5 : A 	→ B}).

Consider the system P1, and let S = NQ, i.e., S contains all configurations.
Transitions t2 and t3 never become dead at �A� and can thus never be included
in any U . Transition t1 eventually becomes dead, as shown by the linear ranking
function r(C) = C(A) + C(B) for U = {t1}. But for this U , the condition C2

for layer functions is not satisfied, as �dis(U)� � �A,A� t2−→ �A,B� �∈ �dis(U)�,
so �dis(U)� �= �dead(U)�. Therefore no layer function exists for this U .

Consider now the system P2, again with S = NQ, and let U = {t5}. Once
t5 is disabled, there is no agent in A, so both t4 and t5 are dead. So �dis(U)� =
�dead(U)�. The linear layer function 	(C) = C(A) satisfies lin-layer-fun(U,a),

showing that U eventually becomes dead. As C
t4t5−−→ C for C = �A,B�, there is

no ranking function r for this U , which would need to satisfy r(C) < r(C).
For our implementation of AsDead(S), we therefore combine both

approaches. We first compute (in polynomial time) the unique maximal set U
for which there is a linear ranking function. If this U is non-empty, we return it,
and otherwise compute a set U of maximal size for which there is a linear layer
function.

8 Experimental Results

We implemented the procedure of Sect. 4 on top of the SMT solver Z3 [57], and
use the Owl [48] and HOA [12] libraries for translating LTL formulas. The result-
ing tool automatically constructs stage graphs that verify stable termination
properties for replicated systems. We evaluated it on two sets of benchmarks,
described below. The first set contains population protocols, and the second
leader election and mutual exclusion algorithms. All tests where performed on
a machine with an Intel Xeon CPU E5-2630 v4 @ 2.20 GHz and 8GB of RAM.
The results are depicted in Fig. 2 and can be reproduced by the certified arti-
fact [18]. For parametric families of replicated systems, we always report the
largest instance that we were able to verify with a timeout of one hour. For
IndOverapprox, from the approaches in Sect. 5, we use IndOverapprox0 in the
examples marked with * and IndOverapprox∞ otherwise. Almost all constructed
stage graphs are a chain with at most 3 stages. The only exceptions are the stage
graphs for the approximate majority protocols that contained a binary split and
5 stages. The size of the Presburger formulas increases with increasing size of the
replicated system. In the worst case, this growth can be exponential. However,
the growth is linear in all examples marked with *.
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Population protocols (correctness)
Parameters |Q| |T | Time

Broadcast [31,22] *
2 1 < 1s

Majority (Example 1)[22] *
4 4 < 1s

Majority [23, Ex. 3] *
5 6 < 1s

Majority [5] (“fast & exact”)
m=13, d=1 16 136 4s
m=21, d=1 (TO: 23,1) 24 300 466s
m=21, d=20 (TO: 23,22) 62 1953 3301s

Flock-of-birds [28,22] *: x ≥ c

c = 20 21 210 5s
c = 40 41 820 45s
c = 60 61 1830 341s
c = 80 (TO: c = 90) 81 3240 1217s

Flock-of-birds [20, Sect. 3]: x ≥ c

c = 60 8 18 15s
c = 90 9 21 271s
c = 120 (TO: c = 127) 9 21 2551s

Flock-of-birds [31,22, threshold-n] *: x ≥ c

c = 10 11 19 < 1s
c = 15 16 29 1s
c = 20 (TO: c = 25) 21 39 18s

Threshold [8][22, vmax=c+ 1] *: a · x ≥ c

c = 2 28 288 7s
c = 4 44 716 26s
c = 6 60 1336 107s
c = 8 (TO: c = 10) 76 2148 1089s

Threshold [20] (“succinct”): a · x ≥ c

c = 7 13 37 2s
c = 31 17 55 11s
c = 127 21 73 158s
c = 511 (TO: c = 1023) 25 91 2659s

Remainder [22] *: a · x ≡m c

m = 5 7 20 < 1s
m = 15 17 135 34s
m = 20 (TO: m = 25) 22 230 1646s

Population protocols (stable cons.)
Parameters |Q| |T | Time

Approx. majority [27] (Cell cycle sw.) *
3 4 < 1s

Approx. majority [51] (Coin game) *
k = 3 2 4 < 1s

Approx. majority [56] (Moran proc.) *
2 2 < 1s

Leader election/Mutex algorithms
Processes |Q| |T | Time

Leader election [44] (Israeli-Jalfon)
20 40 80 7s
60 120 240 1493s
70 (TO: 80) 140 280 3295s

Leader election [42] (Herman)
21 42 42 9s
51 102 102 300s
81 (TO: 91) 162 162 2800s

Mutex [40] (Array)
2 15 95 2s
5 33 239 5s
10 (TO: 11) 63 479 938s

Mutex [59] (Burns)
2 11 75 1s
4 19 199 119s
5 (TO: 6) 23 279 2232s

Mutex [3] (Dijkstra)
2 19 196 66s
3 (TO: 4) 27 488 3468s

Mutex [50] (Lehmann Rabin)
2 19 135 3s
5 43 339 115s
9 (TO: 10) 75 611 2470s

Mutex [61] (Peterson)
2 13 86 2s

Mutex [64] (Szymanski)
2 17 211 10s
3 (TO: 4) 24 895 667s

Fig. 2. Columns |Q|, |T |, and Time give the number of states and non-silent tran-
sitions, and the time for verification. Population protocols are verified for an infinite
set of configurations. For parametric families, the smallest instance that could not be
verified within one hour is shown in brackets, e.g. (TO: c = 90). Leader election and
mutex algorithms are verified for one configuration. The number of processes leading
to a timeout is given in brackets, e.g. (TO: 10).
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Population Protocols. Population protocols [8,9] are replicated systems
that compute Presburger predicates following the computation-as-consensus
paradigm [10]. Depending on whether the initial configuration of agents sat-
isfies the predicate or not, the agents of a correct protocol eventually agree on
the output “yes” or “no”, almost surely. Example 1 can be interpreted as a
population protocol for the majority predicate AY > AN, and the two stable
termination properties that verify its correctness are described in Example 2. To
show that a population protocol correctly computes a given predicate, we thus
construct two Presburger stage graphs for the two corresponding stable termi-
nation properties. In all these examples, correctness is proved for an infinite set
of initial configurations.

Our set of benchmarks contains a broadcast protocol [31], three majority
protocols (Example 1, [23, Ex. 3], [5]), and multiple instances of parameterized
families of protocols, where each protocol computes a different instance of a
parameterized family of predicates5. These include various flock-of-birds protocol
families ([28], [20, Sect. 3], [31, threshold-n]) for the family of predicates x ≥ c
for some constant c ≥ 0; two families for threshold predicates of the form a ·x ≥
c [8,20]; and one family for remainder protocols of the form a · x ≡m c [22].
Further, we check approximate majority protocols ([27,56], [51, coin game]). As
these protocols only compute the predicate with large probability but not almost
surely, we only verify that they always converge to a stable consensus.

Comparison with [22]. The approach of [22] can only be applied to so-called
strongly-silent protocols. However, this class does not contain many fast and
succinct protocols recently developed for different tasks [4,17,20].

We are able to verify all six protocols reported in [22]. Further, we are
also able to verify the fast Majority [5] protocol as well as the succinct pro-
tocols Flock-of-birds [20, Sect. 3] and Threshold [20]. All three protocols are not
strongly-silent. Although our approach is more general and complete, the time to
verify many strongly-silent protocol does not differ significantly between the two
approaches. Exceptions are the Flock-of-birds [28] protocols where we are faster
([22] reaches the timeout at c = 55) as well as the Remainder and the Flock-of-
birds-threshold-n protocols where we are substantially slower ([22] reaches the
timeout at m = 80 and c = 350, respectively). Loosely speaking, the approach of
[22] can be faster because they compute inductive overapproximations using an
iterative procedure instead of PotReach. In some instances already a very weak
overapproximation, much less precise than PotReach, suffices to verify the result.
Our procedure can be adapted to accommodate this (it essentially amounts to
first running the procedure of [22], and if it is inconclusive then run ours).

Other Distributed Algorithms. We have also used our approach to verify arbitrary
LTL liveness properties of non-parameterized systems with arbitrary communi-
cation structure. For this we apply standard automata-theoretic techniques and

5 Notice that for each protocol we check correctness for all inputs; we cannot yet
automatically verify that infinitely many protocols are correct, each of them for all
possible inputs.
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construct a product of the system and a limit-deterministic Büchi automaton
for the negation of the property. Checking that no fair runs of the product are
accepted by the automaton reduces to checking a stable termination property.

Since we only check correctness of one single finite-state system, we can also
apply a probabilistic model checker based on state-space exploration. However,
our technique delivers a stage graph, which plays two roles. First, it gives an
explanation of why the property holds in terms of invariants and ranking func-
tions, and second, it is a certificate of correctness that can be efficiently checked
by independent means.

We verify liveness properties for several leader election and mutex algorithms
from the literature [3,40,42,44,50,59,61,64] under the assumption of a proba-
bilistic scheduler. For the leader election algorithms, we check that a leader is
eventually chosen; for the mutex algorithms, we check that the first process
enters its critical section infinitely often.

Comparison with PRISM [49]. We compared execution times for verification by
our technique and by PRISM on the same models. While PRISM only needs a
few seconds to verify instances of the mutex algorithms [3,40,50,59,61,64] where
we reach the time limit, it reaches the memory limit for the two leader election
algorithms [42,44] already for 70 and 71 processes, which we can still verify.

9 Conclusion and Further Work

We have presented stage graphs, a sound and complete technique for the ver-
ification of stable termination properties of replicated systems, an important
class of parameterized systems. Using deep results of the theory of Petri nets,
we have shown that Presburger stage graphs, a class of stage graphs whose cor-
rectness can be reduced to the satisfiability problem of Presburger arithmetic,
are also sound and complete. This provides a decision procedure for the verifica-
tion of termination properties, which is of theoretical nature since it involves a
blind enumeration of candidates for Presburger stage graphs. For this reason, we
have presented a technique for the algorithmic construction of Presburger stage
graphs, designed to exploit the strengths of SMT-solvers for existential Pres-
burger formulas, i.e., integer linear constraints. Loosely speaking, the technique
searches for linear functions certifying the progress between stages, even though
only the much larger class of Presburger functions guarantees completeness.

We have conducted extensive experiments on a large set of benchmarks. In
particular, our approach is able to prove correctness of nearly all the standard
protocols described in the literature, including several protocols that could not
be proved by the technique of [22], which only worked for so-called strongly-
silent protocols. We have also successfully applied the technique to some self-
stabilization algorithms, leader election and mutual exclusion algorithms.

Our technique is based on the mechanized search for invariants and ranking
functions. It avoids the use of state-space exploration as much as possible. For
this reason, it also makes sense as a technique for the verification of liveness
properties of non-parameterized systems with a finite but very large state space.
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Summary. We extend the tool Peregrine with an automatic verification procedure that
uses the efficient stage graph construction of [BEH+20]. We give a high-level explana-
tion of stage graphs and present a new visualization technique for stage graphs. This
graphical Venn-diagram representation helps users to understand the computation of
population protocols. Additionally, we highlight new features related to stage graphs,
such as the visualization of simulations inside of stage graphs, the automatic analy-
sis of the speed of a protocol, and the detection of bugs through counterexamples. We
demonstrate how the new functionality helps users to understand population protocols
with multiple examples.
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tributed significantly to the creation of techniques presented in the paper. Noteworthy
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verification technique, the automatic speed analysis, as well as the initial idea for the
visualization of stage graphs and simulations.
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Abstract. We present a new version of Peregrine, the tool for the anal-
ysis and parameterized verification of population protocols introduced
in [Blondin et al., CAV’2018]. Population protocols are a model of com-
putation, intensely studied by the distributed computing community, in
which mobile anonymous agents interact stochastically to perform a task.
Peregrine 2.0 features a novel verification engine based on the construc-
tion of stage graphs. Stage graphs are proof certificates, introduced in
[Blondin et al., CAV’2020], that are typically succinct and can be inde-
pendently checked. Moreover, unlike the techniques of Peregrine 1.0, the
stage graph methodology can verify protocols whose executions never
terminate, a class including recent fast majority protocols. Peregrine 2.0
also features a novel proof visualization component that allows the user
to interactively explore the stage graph generated for a given protocol.

Keywords: Population protocols · Distributed computing ·
Parameterized verification · Stage graphs.

1 Introduction

We present Peregrine 2.01, a tool for analysis and parameterized verification of
population protocols. Population protocols are a model of computation, intensely
studied by the distributed computing community, in which an arbitrary number
of indistinguishable agents interact stochastically in order to decide a given prop-
erty of their initial configuration. For example, agents could initially be in one
of two possible states, “yes” and “no”, and their task could consist of deciding
whether the initial configuration has a majority of “yes” agents or not.

Verifying correctness and/or efficiency of a protocol is a very hard problem,
because the semantics of a protocol is an infinite collection of finite-state Markov
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chains, one for each possible initial configuration. Peregrine 1.0 [5] was the first
tool for the automatic verification of population protocols. It relies on theory
developed in [6], and is implemented on top of the Z3 SMT-solver.

Peregrine 1.0 could only verify protocols whose agents eventually never
change their state (and not only their answer). This constraint has become
increasingly restrictive, because it is not satisfied by many efficient and suc-
cinct protocols recently developed for different tasks [1,2,4]. Further, Peregrine
1.0 was unable to provide correctness certificates and the user had to trust the
tool. Finally, Peregrine 1.0 did not provide any support for computing parame-
terized bounds on the expected number of interactions needed to reach a stable
consensus, i.e., bounds like “O(n2 log n) interactions, where n is the number of
agents”.

Peregrine 2.0 addresses these three issues. It features a novel verification
engine based on theory developed in [3,7], which, given a protocol and a task
description, attempts to construct a stage graph. Stage graphs are proof certifi-
cates that can be checked by independent means, and not only prove the protocol
correct, but also provide a bound on its expected time-to-consensus. Stages rep-
resent milestones reached by the protocol on the way to consensus. Stage graphs
are usually small, and help designers to understand why a protocol works. The
second main novel feature of Peregrine 2.0 is a visualization component that
offers a graphical and explorable representation of the stage graph.

The paper is organized as follows. Section 2 introduces population protocols
and sketches the correctness proof of a running example. Section 3 describes the
stage graph generated for the example by Peregrine 2.0, and shows that it closely
matches the human proof. Section 4 describes the visualization component.

2 Population Protocols

A population protocol consists of a set Q of states with a subset I ⊆ Q of initial
states, a set T ⊆ Q2 × Q2 of transitions, and an output function O : Q → {0, 1}
assigning to each state a boolean output. Intuitively, a transition q1, q2 �→ q3, q4

means that two agents in states q1, q2 can interact and simultaneously move to
states q3, q4. A configuration is a mapping C : Q → N, where C(q) represents the
number of agents in a state q. An initial configuration is a mapping C : I → N. A
configuration has consensusb ∈ {0, 1} if all agents are in states with output b. We
write configurations using a set-like notation, e.g. C = �y, n, n� or C = �y, 2 · n�
is the configuration where C(y) = 1, C(n) = 2 and C(q) = 0 for q �∈ {y, n}.

Running Example: Majority Voting. The goal of this protocol is to conduct a
vote by majority in a distributed way. The states are {Y, N, y, n}. Initially, all
agents are in state Y or N, according to how they vote. The goal of the protocol
is that the agents determine whether at least 50% of them vote “yes”.

The output function is O(Y) = O(y) = 1 and O(N) = O(n) = 0. When two
agents interact, they change their state according to the following transitions:

a : Y N �→ y n b : Y n �→ Y y c : N y �→ N n d : y n �→ y y
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Intuitively, agents are either active (Y, N) or passive (y, n). By transition a, when
active agents with opposite opinions meet, they become passive. Transitions b
and c let active agents change the opinion of passive agents. Transition d handles
the case of a tie.

Computations in Population Protocols. Computations use a stochastic model:
starting from an initial configuration C0, two agents are repeatedly picked, uni-
formly at random, and the corresponding transition is applied. This gives rise

to an infinite sequence C0
t1−→ C1

t2−→ . . . of configurations, called a run. A run
stabilizes to consensus b ∈ {0, 1} if from some point on all configurations have
consensus b. Intuitively, in a run that stabilizes to b the agents eventually agree
on the answer b. Given a population protocol P and a predicate ϕ that maps
every configuration C to a value in {0, 1}, we say that P computes ϕ if for
every initial configuration C, a run starting at C stabilizes to consensus ϕ(C)
with probability 1. The correctness problem consists of deciding, given P and ϕ,
whether P computes ϕ. Intuitively, a correct protocol almost surely converges
to the consensus specified by the predicate. Majority Voting is correct and com-
putes the predicate that assigns 1 to the configurations where initially at least
50% of the agents are in state Y, i.e. we have ϕ(C) = (C(Y) ≥ C(N)).

Majority Voting is Correct. To intuitively understand why the protocol is cor-
rect, it is useful to split a run into phases. The first phase starts in the initial
configuration, and ends when two agents interact using transition a for the last
time. Observe that this moment arrives with probability 1 because passive agents
can never become active again. Further, at the end of the first phase either all
active agents are in state Y, or they are all in state N. The second phase ends
when the agents reach a consensus for the first time, that is, the first time that
either all agents are in states Y, y, or all are in states N, n. To see that the second
phase ends with probability 1, consider three cases. If initially there is a majority
of “yes”, then at the end of the first phase no agent is in state N, and at least
one is in state Y. This agent eventually moves all passive agents in state n to
state y using transition b, reaching a “yes” consensus. The case with an initial
majority of “no” is symmetric. If initially there is a tie, then at the end of the
first phase all agents are passive, and transition d eventually moves all agents
in state n to y, again resulting in a “yes” consensus. The third phase is the rest
of the run. We observe that once the agents reach a consensus no transition is
enabled, and so the agents remain in this consensus, proving that the protocol
is correct.

3 Protocol Verification with Peregrine 2.0

Peregrine 2.0 allows the user to specify and edit population protocols. (Our
running example is listed in the distribution as Majority Voting.) After choosing
a protocol, the user can simulate it and gather statistics, as in Peregrine 1.0 [5].
The main feature of Peregrine 2.0 is its new verification engine based on stage
graphs, which closely matches the “phase-reasoning” of the previous section.
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Stage Constraint Certificate Speed

S0 R C(Y) O(n2 logn)
S4 R ∧ C(Y) = 0 C(y) 2O(n log n)

S5 R ∧ C(Y)+C(y) = 0 ⊥ ⊥
S1 R′ C(N) O(n2 logn)
S2 R′ ∧ C(N) = 0 C(n) O(n2 logn)
S3 R′ ∧ C(N)+C(n) = 0 ⊥ ⊥

Fig. 1. Stage graphs for Majority Voting protocol with constraints, certificates and
speeds. The expression R and R′ denote abstractions of the reachability relation, which
are a bit long and therefore omitted for clarity.

Stage Graphs. A stage graph is a directed acyclic graph whose nodes, called
stages, are possibly infinite sets of configurations, finitely described by a Pres-
burger formula. Stages are inductive, i.e. closed under reachability. There is an
edge S → S′ to a child stage S′ if S′ ⊂ S, and no other stage S′′ satisfies
S′ ⊂ S′′ ⊂ S. Peregrine 2.0 represents stage graphs as Venn diagrams like the
ones on the left of Fig. 1. Stages containing no other stages are called terminal,
and otherwise non-terminal. Intuitively, a phase starts when a run enters a stage,
and ends when it reaches one of its children.

Each non-terminal stage S comes equipped with a certificate. Intuitively, a
certificate proves that runs starting at any configuration of S will almost surely
reach one of its children and, since S is inductive, get trapped there forever.
Loosely speaking, certificates take the form of ranking functions bounding the
distance of a configuration to the children of S, and are also finitely represented
by Presburger formulas. Given a configuration C and a certificate f , runs starting
at C reach a configuration C ′ satisfying f(C ′) < f(C) with probability 1.

To verify that a protocol computes a predicate ϕ we need two stage graphs,
one for each output. The roots of the first stage graph contain all initial config-
urations C with ϕ(C) = 0 and the terminal stages contain only configurations
with consensus 0. The second handles the case when ϕ(C) = 1.

Stage Graphs for Majority Voting. For the Majority Voting protocol Peregrine
2.0 generates the two stage graphs of Fig. 1 in a completely automatic way.
By clicking on a stage, say S4, the information shown in Fig. 2 is displayed.
The constraint describes the set of configurations of the stage (Fig. 1 shows
the constraints for all stages). In particular, all the configurations of S4 satisfy
C(Y) = 0, that is, all agents initially in state Y have already become passive. The
certificate indicates that a run starting at a configuration C ∈ S4 \S5 eventually
reaches S5 or a configuration C ′ ∈ S4 \ S5 such that C ′(y) < C(y). Peregrine
2.0 also displays a list of dead transitions that can never occur again from any
configuration of S4, and a list of eventually dead transitions, which will become
dead whenever a child stage, in this case S5, is reached.
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Fig. 2. Details of stage S4 in Fig. 1
at configuration �N, 4 · n, 2 · y�.
The terms C[q] are the number of
agents C(q) in state q.

Fig. 3. Partially constructed
Markov chain after a simulation
of the Majority Voting protocol
inside the protocol’s stage graphs,
with = �N, 4 · n, 2 · y� selected.
(Color figure online)

While they are automatically generated, these stage graphs closely map the
intuition above. The three stages of each graph naturally correspond to the three
phases of the protocol: S0 and S1 correspond to the first phase (we reduce C(Y)
or C(N)), S2 and S4 to the second phase (C(Y) or C(N) is zero, and we reduce
C(y) or C(n)), and S3 and S5 to the third phase (all agents are in consensus).

Speed. Because agents interact randomly, the length of the phase associated to a
stage is a random variable (more precisely, a variable for each number of agents).
The expected value of this variable is called the speed of the stage. A stage has
speed O(f(n)) if for every n the expected length of the phase for configurations
with n agents is at most c · f(n) for some constant c. Peregrine 2.0 computes
an upper bound for the speed of a stage using the techniques of [7]. The last
column of Fig. 1 gives the upper bounds on the speed of all stages. Currently,
Peregrine 2.0 can prove one of the bounds O(n2 log n), O(n3), O(nk) for some
k and 2O(n log n). Observe that for stage S4 of Majority Voting the tool returns
2O(n log n). Majority Voting is indeed very inefficient, much faster protocols exist.

4 Visualizing Runs in the Stage Graph

To further understand the protocol, Peregrine 2.0 allows the user to simulate a
run and monitor its progress through the stage graph. The simulation is started
at a chosen initial configuration or a precomputed example configuration of a
stage. The current configuration is explicitly shown and also highlighted as a
yellow circle in the stage graph. To choose the next pair of interacting agents,
the user can click on them. The resulting interaction is visualized, and the suc-
cessor configuration is automatically placed in the correct stage, connected to
the previous configuration. After multiple steps, this partially constructs the
underlying Markov chain of the system as shown in Fig. 3. One can also navi-
gate the current run by clicking on displayed configurations or using the PREV

and NEXT buttons.
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Fig. 4. Counterexample automatically found by Peregrine when verifying Majority
Voting (broken), shown in the stage graphs as a run from = �Y, N� to = �y, n�.
The graph with root S1 is only a partial stage graph, because stage S4 contains con-
figurations that do not have the correct consensus.

Beyond choosing pairs of agents one by one, the user can simulate a full run
of the protocol by clicking on PLAY . The acceleration slider allows to speed
up this simulation. However, if the overall speed of the protocol is very slow, a
random run might not make progress in a reasonable time frame. An example
for this is the Majority Voting protocol for populations with a small majority for
N, where the expected number of interactions to go from S4 to S5 is 2O(n log n).
Thus, even for relatively small configurations like �4 · Y, 5 · N� a random run
is infeasible. To make progress in these cases, one can click on PROGRESS .
This automatically chooses a transition that reduces the value of the certificate.
Intuitively, reducing the certificate’s value guides the run towards a child stage
and thus, the run from S4 to S5 needs at most n steps. To visualize the progress,
the value of the stage’s certificate for the current configuration is displayed in
the stage details as in Fig. 2 and next to the PROGRESS button.

Finding Counterexamples. The speed of stage S4 with certificate C(y) is so low
because of transition d : y n �→ y y that increases the value of the certificate
and may be chosen with high probability. Removing the transition d makes the
protocol faster (this variant is listed in the distribution as “Majority Voting
(broken)”). However, then Peregrine cannot verify the protocol anymore, and
it even finds a counterexample: a run that does not stabilize to the correct
consensus. Figure 4 shows the counterexample ending in the configuration �y, n�
from the initial configuration �Y, N�, i.e. a configuration with a tie. In this case,
the configuration should stabilize to 1, but no transition is applicable at �y, n�,
which does not have consensus 1. This clearly shows why we need the transition
d. Note however that the left part with root stage S0 in Fig. 4 is a valid stage
graph, so the modified protocol works correctly in the ,negative case. This helps
locate the cause of the problem.
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Summary. We introduce segmental simulation, a novel approximate simulation ap-
proach for chemical reaction networks based on memoization. This method accelerates
the generation of new simulations by reusing segments from previous simulations. We
explain how segmental simulation leverages a population-level abstraction to selec-
tively reuse segments starting in the same region. Furthermore, we demonstrate that
segmental simulation can be viewed as an abstraction technique with different levels
of granularity. Through a detailed experimental evaluation on challenging benchmarks
from the literature, we show that segmental simulation significantly speeds up the sim-
ulation process while preserving the dynamics of the original system. In comparison
with other advanced simulation techniques, we establish that segmental simulation is
competitive in terms of both efficiency and accuracy.

Contributions of thesis author. The author played a pivotal role in the composition
and revision of the manuscript. They actively participated in joint discussions and
contributed significantly to the development of the theoretical results presented in the
paper. Noteworthy individual contributions include the initial idea for using mem-
oization in simulation, the development of the segmental simulation technique, the
introduction of the population-level abstraction, the inception of the lazy and adap-
tive segmental simulation methods, the implementation of the approach, as well as the
experimental evaluation on benchmarks.
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Abstract. Simulating chemical reaction networks is often computation-
ally demanding, in particular due to stiffness. We propose a novel simula-
tion scheme where long runs are not simulated as a whole but assembled
from shorter precomputed segments of simulation runs. On the one hand,
this speeds up the simulation process to obtain multiple runs since we can
reuse the segments. On the other hand, questions on diversity and gen-
uineness of our runs arise. However, we ensure that we generate runs close
to their true distribution by generating an appropriate abstraction of the
original system and utilizing it in the simulation process. Interestingly,
as a by-product, we also obtain a yet more efficient simulation scheme,
yielding runs over the system’s abstraction. These provide a very faithful
approximation of concrete runs on the desired level of granularity, at a
low cost. Our experiments demonstrate the speedups in the simulations
while preserving key dynamical as well as quantitative properties.

Keywords: Chemical reaction networks · Population models ·
Stochastic simulation algorithm · Model abstraction

1 Introduction

Chemical Reaction Networks (CRNs) are a versatile language widely used
for modeling and analysis of biochemical systems [10] as well as for high-level pro-
graming of molecular devices [6,34]. The time-evolution of CRNs is governed by
the Chemical Master Equation that leads to a (potentially infinite) discrete-space,
continuous-time Markov chain (CTMC) with “population” structure, describing
how the probability of the molecular counts of each chemical species evolve in time.
Many important biochemical systems feature complex dynamics, that are hard to
analyze due to state-space explosion, stochasticity, stiffness, and multimodality of
the population distributions [17,36]. This fundamentally limits the class of sys-
tems the existing techniques can handle effectively. There are several classes of
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approaches that try to circumvent these issues, in particular, (i) stochastic simu-
lation avoids the explicit construction of the state space by sampling trajectories
in the CRN, and (ii) abstraction builds a smaller/simpler model preserving the
key dynamical properties and allowing for an efficient numerical analysis of the
original CRN. Over the last two decades, there has been very active research on
improving the performance and precision of these approaches, see the related work
below. Yet, running thousands of simulations to approximate the stochastic behav-
ior often takes many hours; and abstractions course enough to be analyzed easily
often fail to capture the complex dynamics, e.g. oscillations in the notorious tiny
(two-species) predator-prey system.

Our Contribution. In this paper, in several simple steps, we uniquely combine
the simulation methods with the abstraction methods for CTMC states, further
narrowing the performance gap. As the first step, we suggest leveraging mem-
oization, a general optimization technique that pre-computes and stores partial
results to speedup the consequent computation. In particular, when simulating
from a current state we reuse previously generated pieces of runs, called seg-
ments, that start in “similar enough” states. Thus, rather than spending time
on simulating a whole new run, we quickly stitch together the segments. To
ensure a high variety of runs and generally a good correspondence to the orig-
inal probability space of runs, we not only have to generate a sufficiently large
number of segments; but it is crucial to also consider their length and the similar-
ity of their starting states. We show how the latter two questions can be easily
answered using the standard interval abstraction on the populations, yielding
faithful yet fast simulations of the CTMC for the CRN.

In a second step, we also produce simulation runs over the (e.g. interval)
abstraction of the CTMC, not only fast but also with low memory requirements,
allowing for efficient analysis on the desired level of detail. To this end, we drop
all the concrete information of each segment, keeping only its abstraction plus
its concrete end state. This surprising choice of information allows us to define
transitions on the abstraction using the simulation in a rather non-standard way.
The resulting semantics and dynamics of the abstraction are non-Markovian, but
capture the dynamics of the analyzed system very precisely. From the method-
ological perspective, the most interesting point is that simulation and abstraction
can help each other although typically seen as disparate tools.

Related Work. To speed up the standard Stochastic Simulation Algorithm
(SSA) [15], several approximate multi-scale simulation techniques have been pro-
posed.They include advanced τ -leapingmethods [5,27], that use aPoisson approx-
imation to adaptively take time steps leaping over many reactions assuming the
system does not change significantly within these steps. Alternatively, various par-
titioning schemes for fast and slow reactions have been considered [4] allowing one
to approximate the fast reactions by a quasi-steady-state assumption [17,32]. The
idea of separating the slow and fast sub-networks has been further elaborated in
hybrid simulations treating some appropriate species as continuous variables and
the others as discrete ones [33]. As before, appropriate partitioning of the species is
essential for the performance and accuracy, and thus several (adaptive) strategies
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have been proposed [14,24]. Recently a deep learning paradigm has been intro-
duced to further shift the scalability of the CRN analysis. In [3], the authors learn
from a set of stochastic simulations of the CRN a generator, in the form of a Gener-
ative Adversarial Network, that efficiently produces trajectories having a similar
distribution as the trajectories in the original CRN. In [18] the authors go even
further and learn from the simulations an estimator of the given statistic over the
original CRN. The principal limitation of these approaches is the overhead related
to the learning phase that typically requires a nontrivial number of the simulations
of the original CRN.

To build a plausible and computationally tractable abstraction of CRNs,
various state-space reduction techniques have been proposed that either trun-
cate states of the underlying CTMC with insignificant probability [22,30,31] or
leverage structural properties of the CTMC to aggregate/lump selected sets of
states [1,2]. The interval abstraction of the species population is a widely used
approach to mitigate the state-space explosion problem [13,29,37]. We define a
segment of simulation runs as a sequence of transitions that can be seen as a
single transition of the abstracted system. These “abstract” transitions in the
interval abstractions are studied in [9] as “accelerated” transitions. Alternatively,
several hybrid models have been considered levering a similar idea as the hybrid
simulations. In [23], a pure deterministic semantic for large population species is
used. The moment-based description for medium/high-copy number species was
used in [19]. The LNA approximation and an adaptive partitioning of the species
according to leap conditions (that is more general than partitioning based on
population thresholds) were proposed in [7].

Advantages of Our Approach. We show that the proposed segmental simula-
tion scheme preserves the key dynamical properties and its qualitative accuracy
(with respect to the SSA baseline) is comparable with advanced simulation as well
as deep-learning approaches. The scheme, however, provides a significant compu-
tational gain over these approaches. Consider a detailed analysis (including 100000
simulation runs) of the famous Toggle switch model reported in [24]. Using the
τ -leaping implementation in StochPY [28] is not feasible and the state-of-the-art
adaptive hybrid simulation method requires a day to perform such an analysis.
However, our approach needs less than two hours. Moreover, our lazy strategy does
not require a computationally demanding pre-computation and typically signifi-
cant benefits from reusing segments after a small number of simulations. This is the
key advantage compared to the learning approaches [3,18], where a large number
of simulations of the original CRN are required, as well as to approaches based on
(approximate) bisimulation/lumping [11,26], requiring a complex analysis of the
original model. The approaches based on hybrid formal analysis of the underlying
CTMC [7,19,23] have to perform a computationally demanding analysis of condi-
tioned stochastic processes. For example, in [7] the authors report that an analysis
of the Viral infection model took more than 1 h. The segmental simulation using
10000 runs provides the same quantitative information in 3 min.

In our previous work [9], we proposed a semi-quantitative abstraction and
analysis of CRNs focusing on explainability of the results and low computational
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complexity, however, providing only limited quantitative accuracy. The proposed
simulation scheme provides significantly better accuracy as it keeps track of the
current concrete state and thus avoids “jumps” to the abstract state’s repre-
sentative. This kind of rounding is a major source of error as exemplified in
the predator-prey model, where the semi-quantitative abstraction of [9] failed to
accurately preserve the oscillation and our new approach captures it faithfully.

2 Preliminaries

Chemical Reaction Networks

CRN Syntax. A chemical reaction network (CRN) N = (Λ,R) is a pair of finite
sets, where Λ is a set of species, |Λ| denotes its size, and R is a set of reactions.
Species in Λ interact according to the reactions in R. A reaction τ ∈ R is a
triple τ = (rτ , pτ , kτ ), where rτ ∈ N|Λ| is the reactant complex, pτ ∈ N|Λ| is the
product complex and kτ ∈ R>0 is the coefficient associated with the rate of the
reaction. rτ and pτ represent the stoichiometry of reactants and products. Given

a reaction τ1 = ([1, 1, 0], [0, 0, 2], k1), we often refer to it as τ1 : λ1 + λ2
k1−→ 2λ3.

CRN Semantics. Under the usual assumption of mass action kinetics1, the
stochastic semantics of a CRN N is generally given in terms of a discrete-state,
continuous-time stochastic process X(t) = (X1(t),X2(t), . . . , X|Λ|(t), t ≥ 0) [12].
The state change associated with the reaction τ is defined by υτ = pτ − rτ , i.e.
the state X is changed to X′ = X + υτ . For example, for τ1 as above, we have
υτ1

= [−1,−1, 2]. A reaction can only happen in a state X if all reactants are
present in sufficient numbers. Then we say that the reaction is enabled in X. The
behavior of the stochastic system X(t) can be described by the (possibly infi-
nite) continuous-time Markov chain (CTMC). The transition rate corresponding
to a reaction τ is given by a propensity function that in general depends on the
stoichiometry of reactants, their populations and the coefficient kτ .

Related Concepts

Population Level Abstraction. The CTMC is the accurate representation of
CRN N , but—even when finite—it is not scalable in practice because of the
state space explosion problem [20,25]. Various (adaptive) population abstrac-
tions [1,13,29,37] have been proposed to reduce the state-space and preserve the
dynamics of the original CRN. Intuitively, abstract states are given by intervals
on sizes of populations (with an additional specific that the abstraction captures
enabledness of reactions). In other words, the population abstraction divides the
concrete states of the CTMC into hyperrectangles called abstract states. We chose
one concrete state within each abstract state as its representative. Although our
approach is applicable to very general types of abstractions, for simplicity and
specificity we consider in this paper only the exponential partitioning for some

1 We can handle alternative kinetics including Michaelis-Menten and Hill kinetics.
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parameter 1 < c ≤ 2 given as {[0,0]} ∪ {[�cn−1�, �cn� − 1] : n ∈ N} for all dimen-
sions. For example with c = 2 the intervals are [0, 0], [1, 1], [2, 3], [4, 7], [8, 15], . . .
i.e. they grow exponentially in c. While the structure of the abstract states is rather
standard, the transitions between the abstract states are defined in different ways.

Stochastic Simulation. An alternative computational approach to the analysis
of CRNs is to generate trajectories using stochastic algorithms for simulation.
Gillespie’s stochastic simulation algorithm (known as SSA) [15] is a widely used
exact version of such algorithms, which produces statistically correct trajecto-
ries, i.e., sampled according to the stochastic process described by the Chemical
Master Equation. To produce such a trajectory, SSA repeatedly applies one reac-
tion at a time while keeping track of the elapsed time. This can take a long time
if the number of reactions per trajectory is large. This is typically the case if (1)
there are large numbers of molecules, (2) the system is stiff (with high differences
in rates) or (3) we want to simulate the system for a time that is long compared
to the rates of a single reaction. One of the approaches that mitigate the effi-
ciency problem is τ -leaping [16]. The main idea is that for a given time interval
(of length τ), where the reaction propensities do not change significantly, it is
sufficient to sample (using Poisson distributions) only the number of occurrences
for each reaction and not their concrete sequence. Having the numbers allows
one to compute and apply the joint effect of the reactions at once. As detailed
in the next section, instead of this time locality, we leverage a space locality.

3 The Plan: A Technical Overview

Since we shall work with different types of simulation runs, gradually building
on top of each other, and both with the concrete system and its abstraction, we
take the time here to overview the train of thoughts, the involved objects, and
the four main conceptual steps:

– Section 4.1 introduces segmental simulation as a means to obtain simula-
tion runs of the concrete system faster at the cost of (i) a significant memory
overhead and (ii) skewing the probability space of the concrete runs, but only
negligibly w.r.t. a user-given abstraction of the state space.

– Section 4.2 introduces densely concrete simulation, which eliminates the
memory overhead but produces concrete simulation runs where only some of
the concrete states on the run are known, however, frequently enough to get
the full picture (again w.r.t. the abstraction), see Fig. 2 (bottom).

– Section 5.1 shows how to utilize Sect. 4 to equip the state-space abstraction
(quotient) with a powerful transition function and semantics in terms of a
probability space over abstract runs, i.e. runs over the abstract state space.
The abstraction is executable and generates abstract simulation runs
with extremely low memory requirements, yet allowing for transient analyses
that are very precise (again w.r.t. the abstraction), see Fig. 3 (left).

– Section 5.2 considers the concretization of abstract simulation runs back
to the concrete space, see Fig. 3 (right).
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4 Segmental Simulation via Abstract States

4.1 Computing and Assembling Segments via Abstract States

Precomputing Segments. Assume we precomputed for each concrete state s
a list of k randomly chosen short trajectories, called segments, starting in s. Note
that we may precompute multiple segments with the same endpoint, reflecting
that this evolution of the state is more probable. We can now obtain a trajectory
of the system by repeatedly sampling and applying a precomputed segment for
the current state instead of a single reaction.

Using Abstraction. While simulating with already precomputed segments
would be faster, it is obviously inefficient to precompute and store the segments
for each state separately. However, note that the rates of reactions in CRNs are
similar for states with similar amounts of each species, in particular for states
within the same abstract state of the population-level abstraction. Consequently,
we only precompute k segments for one concrete state per abstract state: the
abstract state’s representative (typically its center). For other states, the distri-
bution of the segments would be similar and our approximation assumes them to
be the very same. While the exponential population-level abstraction is a good
starting point for many contexts, the user is free to provide any partitioning
(quotient) of the state space that fits the situation and the desired granularity
of the properties in question. E.g. one could increase the number of abstract
states in regions of the state space we want to study.

An example for k = 3 precomputed segments is depicted in Fig. 1 (left). We
choose to terminate each segment when it leaves the abstract state. Intuitively,
at this point, at least one dimension changes significantly, possibly inducing
significantly different rates.

Assembling the Segments. In a segmental simulation, instead of sampling
a segment for the current concrete state, we sample a segment for the current
representative. Because the sampled segment may start at a different state, we
apply the relative effect of the segment to the current concrete state. Note that
this is a conceptual difference compared with our previous work [9] where the
segments are applied to abstract states. The importance of this difference is dis-
cussed in [21, Appendix C]. Figure 1 (right) illustrates the segmental simulation
for the segments on the left. The system starts in an initial state, which belongs
to the bottom left abstract state. Thus, segment c was randomly chosen among
the segments a, b, c belonging to that abstract state. After applying the effect of
segment c, the system is in the bottom right abstract state and thus we sample
from d, e, f and so on. Note that applying a segment might not change the cur-
rent abstract state and might also only do so temporarily (like the application
of l and h, respectively, in the figure). Once the segment leaves the current state
a different set of reactions might be enabled. Thus, to make sure that we never
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Fig. 1. (left) Four neighboring abstract states, drawn as squares. Each abstract state
has k = 3 segments that start in their respective centers. Each segment is a sequence of
reactions drawn as dotted arrows. The difference between the endpoint and the starting
point is called a summary and is drawn in unbroken black. (right) A possible segmental
simulation obtained by applying the segments c, d, g, i, h, i and l to the initial state sinit.

apply reactions that are not enabled, the population level abstraction has to
satisfy some additional constraints.2

Lazy and Adaptive Computation of Segments. Instead of precomputing
the segments for all abstract states, we generate them on the fly. When we
need to sample the segments of an abstract state a and there are less than k
segments, then we generate a new segment and store it. This new segment is
the one we would have sampled from the k (not yet computed) segments for a.
Thus, we enlarge the reservoir of segments lazily, only as we need it. Since many
abstract states might be rarely reached we generate only few segments for them
if any at all. In contrast, we only generate many segments for frequently visited
states, which are thus reused many times, improving the efficiency without much
overhead. Note that segments can be reused already for a single simulation if that
simulation visits the same abstract state more than k times. However, the real
benefit of our approach becomes apparent when we generate many simulations.

Algorithm. We summarize the approach in the pseudocode of Algorithm 1.
It is already presented in a way that produces not one but m simulations and
computes the segments lazily. We start with no precomputed segments. As we
simulate, we always compute the current abstract state a (L. 6) and on L. 7
decide whether to simulate a new segment (L. 9) or uniformly choose from the
previously computed ones (L. 11).

2 We must choose a population abstraction such that applying any of the represen-
tative’s possible segments to any corresponding concrete state may only change the
enabledness of reactions with the last reaction. Similar constraints are needed if we
want to avoid transitions to non-neighboring abstract states. For all presented models,
the exponential population abstraction with c ≤ 2 already has the desired properties.
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Algorithm 1: Lazy Segmental Simulation
Inputs : N (CRN), k (number of segments), c (partitioning parameter),

tend (time horizon), sinit (start state) and m (number of simulations)
Output: list of m segmental simulations

1 simulations := [ ];
2 memory := {}; // mapping each abstract state to a list of segments
3 for 1 to m do
4 s := sinit; t := 0; simulation := [(s, t)];
5 while t < tend do
6 a := abstractStatec(s);
7 if |memory(a)| < k then
8 segment := sampleNewSegment(a.representative); // sample new segment
9 memory(a).add(segment); // save it for reuse

10 else
11 segment := chooseUniformlyAtRandomFrom(memory(a)); // reuse old segment
12 end

// apply segment’s relative effects
13 s := s + segment.Δstate; t := t + segment.Δtime;
14 simulation.add((s, t));

15 end
16 simulations.add(simulation);

17 end
18 return simulations

4.2 Densely Concrete Simulations

Summaries. Storing and applying the whole segments can still be memory- and
time-intensive. Therefore, we replace each segment with a single “transition”,
called a summary. It captures the overall effect on the state, namely the difference
between the end state and the starting state, and the time the sequence of
reactions took. The summaries of segments in Fig. 1 (left) are depicted as solid
black arrows. Algorithm 1 applies the segment’s summary in L. 13.

Assembling Summaries. Instead of segments, we can append their summaries
to the simulation runs, see Fig. 1 (right). We call the result a densely concrete
simulation. The effect of this modification can be seen in Fig. 2. The top part of
the figure shows a typical oscillating run of the predator-prey model that was
produced via SSA simulation. The middle part displays a segmental simulation
based on our abstraction that uses segments. It exhibits the expected oscillations
with varying magnitudes and is visually indistinguishable from an SSA simula-
tion. On the bottom, we see the corresponding densely concrete simulation where
the segments of the same segmental simulation have been replaced with their
summaries. We still observe the same global behavior but lose the local detail.
More precisely, we only see those concrete states of the middle simulation that
are the seams of the segments (now displayed as dots). All the other concrete
states are unknown. However, they are close to the dots since they can only be in
the same or neighboring abstract states, meaning the known concrete states are
arranged densely enough. Moreover, the distance between the dots corresponds
to the lengths of the segments. Hence the dots are arranged sparsely only if the
system entered a very stable abstract state. Altogether, all changes are reflected
faithfully, relative to the level of detail of the abstraction.
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Fig. 2. Comparison of simulations for the predator-prey system: SSA simulation (top),
segmental simulation (middle) and the same segmental simulation as densely concrete
simulation where segments are replaced with their summaries (bottom).

4.3 Introduced Inaccuracy

We summarize the sources of errors our approach introduces.

(1) Number of Segments. Instead of sampling from all of the possible tra-
jectories, we only sample from k segments and consequently lose some variance.
Thus, if k is too small or if the trajectories are too long, our abstraction might
miss important behavior of the original system. However, it is easy to see that
this error vanishes for k → ∞. It is thus crucial to choose an appropriate value
for k and we discuss this choice in Sect. 6. However, note that sampling from seg-
ments instead of reactions cannot produce spurious behavior. In other words, all
trajectories we obtain by sampling segments are possible trajectories of the origi-
nal system. Further, if the segments we sample from are representative enough of
the actual distribution of trajectories, we will exhibit the same global behavior.

(2) Size of the Abstract States. Recall that we do not sample the distri-
bution of segments for the current state but instead sample the distribution for
the representative. Because the propensities and thus the rates of the reactions
are different in the current state and the representative state, this inherently
introduces an error. However, this error is small if we assume that the distribu-
tion over segments does not significantly change within the abstract state. This
assumption is reasonable since the propensity functions and thus the rates of the
reactions are similar for similar populations and change only slowly; except when
the number of molecules is close to zero but there the exponential abstraction
provides very fine abstract states. Further, we can decrease the parameter c that
determines the interval sizes of the exponential population-level abstraction. A
discussion of the influence of parameter c on the accuracy of our method can be
found in Sect. 6.
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5 From Segmental Simulations to Abstract Simulations

In this section, we focus on abstract simulation runs, i.e. runs over the abstract
state space, for several reasons. Concrete simulation runs, i.e. runs over the con-
crete state space, provide a rich piece of information about the system, however,
already storing a large number of very long simulation runsmaybe infeasible. Com-
pared to segmental simulation, densely concrete simulation drops most concrete
states by only remembering the seams of the segments; yet the number of concrete
states can be large and each one can take non-trivial space if the populations reach
large numbers. Another disadvantage is that, for most of the time points, we only
know that the current state is in the same abstract state as the nearest seams or
in their neighbors, but no exact concrete state. In contrast, the abstraction may
hide non-interesting details and instead show the big picture. Altogether, if only
population levels are of interest, abstract simulations can be useful.

5.1 Segmental Abstraction of CTMC and Abstract Simulation

Population-level abstraction of the CTMC might be a lot more explainable than
the complete CTMC. However, while the state space of the population abstrac-
tion of a CTMC is simply given by the population levels as the Cartesian product
of the intervals over all the species, it is not clear what the nature of the transitions
should be. There are two issues the previous literature faces. First, what should be
the dynamics of an abstract state if each concrete state within behaves a bit dif-
ferently? Second, what should be the dynamics of one abstract step between two
abstract states when it corresponds to a varying number of concrete steps? Stan-
dard approaches either pick a representative state and copy its dynamics, e.g. the
rate of the reaction, or take an over-approximation of all behaviors of all possible
members of the class, e.g. take an interval of possible rates.

Here we reuse the segmental simulation and the concepts of Sect. 4 to formally
define a transition function on the abstraction. This gives us the abstraction’s
semantics and makes it executable. Moreover, the resulting behavior is close to
the original system (in contrast to, e.g. [9], we can even preserve the oscillations
of the predator-prey models), but at the expense of making the abstract model
non-Markovian. Intuitively, our segmental abstraction of the CTMC is given by
the abstract state space and the segments, exactly as depicted in Fig. 1 (left).
Similar to other non-Markovian systems, the further evolution of the system
is not given only by its current state, but also by some information about the
history of the run so far. For instance, in the case of semi-Markov processes,
it is the time spent in the state so far; in the case of generalized semi-Markov
processes, it is the times each event has been already scheduled for. In the case
of the segmental abstraction, it is a vector forming a concrete state.

Formally, the configuration of the segmental abstraction is a triple (a, s, t)
where a is an abstract state, s one of its concrete states, and t a time. The
probability to move from (a, s, t) to (a′, s′, t′) is then given by the probability to
sample a segment with a summary s′ −s on states and taking t′ − t time. (Hence
we can store the summaries only, as described in Sect. 4.2.) Given a concrete



Abstraction-Based Segmental Simulation of Chemical Reaction Networks 51

Fig. 3. RNA distribution in the viral infection model at t = 200 s predicted by SSA
and abstract segmental simulation with c = 1.5 and k = 100: in the abstract domain
(left) and the concrete domain (right) where the segmental simulation’s abstract values
were concertized using a uniform distribution over the interval.

state s to start in, there is a unique probability space over the abstract runs
initiated in (a, s, 0) obtained by dropping the second component.

The probability space coincides with the probability space introduced by the
segmental simulation (in the variant with summaries of precomputed segments)
when the concrete runs are projected by the population-level abstraction to the
abstract runs. However, (i) the space needed to store the abstract simulations
is smaller and (ii) transient analysis is well defined for every time point, while
its results are still very faithful. Indeed, Fig. 3 (left) shows an example of the
transient analysis (at a given time point t) obtained by (i) the states reached by
real simulation runs and clustered according to the population-level abstraction,
and (ii) abstract states reached by abstract segmental simulation runs. Given
the granularity of the abstraction, the results are very close.

5.2 From Abstract Simulations Back to Concrete Predictions

Further, one can map the abstract states to sets of concrete states. Consequently,
the results of the abstract transient analysis can be mapped to a distribution
over concrete states, whenever we assume a distribution over the concrete states
corresponding to one abstract state. For instance, taking uniform distribution
as a baseline, we obtain a concrete transient analysis from the abstract one, see
Fig. 3 (right), which already shows a close resemblance.

6 Experimental Evaluation

We evaluate the densely concrete version of segmental simulation and consider
the following three research questions:

Q1 What is the accuracy of segmental simulation?
Q2 What are the trade-offs between accuracy and performance?
Q3 Are the achieved trade-offs competitive with alternative approaches?
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Experimental Setting and Accuracy Measurement

Benchmark selection. We use the following models from the literature: (1) Viral
Infection (VI) [35], (2) Repressilator (RP) [24], (3) Toggle Switch (TS) [24] and
(4) Predator-Prey (PP, a.k.a. Lotka-Volterra) [15]. The formal definition for
each of these models can be found in [21, Appendix D]. Although the underlying
CRNs are quite small (up to 6 species and 15 reactions), their analysis is very
challenging due to stochasticity, multi-scale species populations and stiffness.
Therefore, the models are commonly used to evaluate advanced numerical as
well as simulation methods.

Implementation and HW Configuration. Our approach is implemented as modi-
fication of SeQuaiA, a Java-based tool for semi-quantitative analysis of CRNs [8].
All experiments run on a 1.80 GHz Lenovo ThinkPad T580 with 8 GB of RAM.
To report speedups, we use our own competitive implementation of the SSA
method as a baseline. Depending on the model, it achieves between 1×106 and
7×106 reactions per second. We refer to the SeQuaiA repository3 for all active
development and provide an artefact4 to reproduce the experimental results.

Assessing Accuracy. To measure the accuracy, we compare transient distribu-
tions for one species at a time. For this, we approximate the implied transient
distribution of our approach and of SSA by running a large number of simula-
tions. We used 1000 simulations for the models RP and TS as their simulations
take longer, and 10000 for PP and VI. The resulting histograms for the studied
species are then normalized to approximate the transient distribution of that
species. To quantify the error, we compare the means of both distributions and
report the earth-mover-distance (EMD) between them. Because EMD values are
difficult to interpret without context, we additionally report the EMD between
two different transient distributions that were computed with SSA. Intuitively,
even if segmental simulation was as accurate as SSA, we would expect to see
a EMD similar to the EMD of this “control SSA”. Additionally, Fig. 12 in [21,
Appendix B] compares the variance.

Q1 What is the Accuracy of Segmental Simulation?

In this section, we evaluate the accuracy of the segmental simulation scheme and
the effects of parameters c (size of the abstraction) and k (the number of stored
summaries) in a quantitative manner. For a more qualitative evaluation see Fig. 2
and [21, Appendix A] where you find exemplary simulations and trajectories for
both segmental simulation and SSA. We consider three population abstractions
given by c ∈ {2, 1.5, 1.3} (recall that c = 2 is the most coarse abstraction as
explained in Sect. 2) and three values of k, namely k ∈ {10, 100, 1000}.

We start with the VI model where one is typically interested in the dis-
tribution of the RNA population at a given time t. Figure 4 (left) shows the

3 https://sequaia.model.in.tum.de (SeQuaiA).
4 https://doi.org/10.5281/zenodo.6658924 (artifact).

https://sequaia.model.in.tum.de/
https://doi.org/10.5281/zenodo.6658924
https://sequaia.model.in.tum.de
https://doi.org/10.5281/zenodo.6658924
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Fig. 4. Accuracy on the viral infection model using different abstractions.

Fig. 5. Accuracy on the repressilator model using different abstractions.

distributions at t = 200 obtained by SSA simulation and by segmental sim-
ulations with different values of the parameters c and k. We observe that all
distributions show the expected bi-modality [17]. If a less precise abstraction is
used (c = 2 and/or k = 10), the probability that RNA dies out is significantly
higher than the reference value. In Fig. 4 (right), we evaluate how the EMD (for
the RNA) changes in time for particular settings. The results clearly confirm
that k = 10 leads to significant inaccuracy. For all other settings, the EMD is
very close to the SSA control demonstrating the very high accuracy of our app-
roach. The only notable exceptions are the variants with c = 2, where the EMD
fluctuates. We also observe that increasing k from 100 to 1000 does not bring
any considerable improvement.

Different trends can be observed for the RP model. Figure 5 shows how the
mean value (left) and the EMD (right) of the species pA change over time. We
observe that the partitioning of the populations plays a more important role
here, i.e., the coarse abstraction (c = 2) induces a notable inaccuracy. The fact
that the accuracy is less sensitive with respect to the low values of k is a result
of the very regular dynamics of the model where the populations of the proteins
pA and pB oscillate and slowly decrease. Similar trends (not presented here) are
observed also for the TS model.

Finally, we consider the PP model. Although very simple, it is notoriously
difficult for abstraction-based approaches since they struggle to preserve the
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Fig. 6. Accuracy on the predator-prey model using different abstractions.

Fig. 7. Increasing speed of lazy segmental simulation for the toggle switch model (left)
and repressilator model (right).

oscillation and the die-out time. Recall Fig. 2 of Sect. 4 where we clearly observe
the expected oscillation with the correct frequency in a segmental simulation
for c = 2 and k = 100. Figure 6 (left) shows how the mean population of the
predators changes in time. We observe that the less precise abstractions do not
accurately preserve the rate at which the mean population decreases. On the
other hand, the most precise setting is close to the SSA reference and control
curve. Figure 6 (right) shows the cumulative predator distributions at t = 100
demonstrating how the simulations using less precise abstractions deviate from
the reference solution.

Q2 What are the Trade-Offs Between Accuracy and Performance?

Recall that our approach is based on re-using the segments generated in the previ-
ous simulation runs. Figure 7 shows how the average time per simulation decreases
for a growing number of simulations. For some models (like TS) segmental simu-
lation is always faster than SSA because it can reuse segments already during the
first simulation. For other models (like RP), segmental simulation becomes faster
after a number of simulations that depends on the precision of the abstraction.
Table 1 shows the speedup factor we observe when running 10,000 segmental simu-
lations instead of SSA simulations. Table 5 in [21, Appendix B] reports the average
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Table 1. Average run-time of one SSA simulation and the speedup factor of segmental
simulation when computing 10,000 simulations with different abstraction parameters.

Model SSA
SEG k = 10 SEG k = 100 SEG k = 1000

c = 2 c = 1.5 c = 1.3 c = 2 c = 1.5 c = 1.3 c = 2 c = 1.5 c = 1.3

PP 0.014 s 70x 70x 70x 70x 70x 23x 28x 23x 12x

VI 0.88 s 730x 380x 180x 100x 48x 17x 8.6x 4.8x 2.9x

TS 22 s 360x 360x 340x 390x 350x 280x 250x 190x 110x

RP 9.1 s 760x 540x 320x 300x 140x 62x 54x 21x 7.4x

Table 2. Number of visited abstract states after 10,000 segmental simulations for
different abstraction parameters.

Model
SEG k = 10 SEG k = 100 SEG k = 1000

c = 2 c = 1.5 c = 1.3 c = 2 c = 1.5 c = 1.3 c = 2 c = 1.5 c = 1.3

PP 163 398 832 170 391 888 170 397 885

VI 1,022 3,669 1,0337 1,269 3,797 11,524 1,353 4,018 11,218

TS 5,072 13,167 38,827 9,248 25,733 65,259 10,388 29,424 74,950

RP 12,921 42,241 124,280 18,014 56,312 155,394 21,460 64,385 146,126

number of reactions per SSA simulation and the average number of applied sum-
maries per segmental simulation. Comparing these numbers highlights the source
of the speedup: instead of sampling and applying many reactions, segmental sim-
ulation does the same for fewer summaries. This also gives an estimate for the
speedup factor that can be reached once only precomputed summaries are used.
Note that the speedup factors we report are smaller because we include the time
needed for computing the summaries.

The PP model includes only two species and it is not stiff. Therefore, already
the SSA simulation is quite fast. Our approach still achieves a stable speedup
around 70x that drops to a factor of 12x for the most precise abstraction (c = 1.3
and k = 1000) providing accuracy close to the control SSA.

For the VI model, we observe a slowdown of the segmental simulation when
improving the abstraction, namely, for k = 1000. Recall, we reported very good
accuracy already for c = 2 and k = 100 which gives us a speedup factor of 100x.
For an accuracy that is close to the control SSA, we archive a speedup factor of 50x.

The TS model exhibits regular oscillation, where a typical run repeatedly
visits the same abstract states. This is very beneficial for our approach as we
can very efficiently reuse segments. We observe a significant slowdown for c = 1.3
and k = 1000, since reusing segments is much less effective. The RP model has
similar characteristics, but we observe an even more significant slowdown when
the abstraction is refined. As we discussed in the previous section, very good
accuracy for these models is achieved already for c = 1.5 and k = 100 which give
us speedup factors 350x and 140x for the TS and RP model, respectively.

In general, segmental simulation is never slower than SSA by more than the
constant factor that is the result of saving and loading segments and it eventually
becomes faster if we compute enough simulations. We pay for the inevitable
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Table 3. Size of segmental abstraction after 10,000 simulations for different
parameters.

Model
SEG k = 10 SEG k = 100 SEG k = 1000

c = 2 c = 1.5 c = 1.3 c = 2 c = 1.5 c = 1.3 c = 2 c = 1.5 c = 1.3

PP 25 KB 61 KB 130 KB 250 KB 570 KB 1.3 MB 2.2 MB 4.8 MB 11 MB

VI 210 KB 730 KB 2.0 MB 1.8 MB 4.8 MB 13 MB 11 MB 25 MB 53 MB

TS 1.2 MB 3.0 MB 8.7 MB 15 MB 37 MB 85 MB 100 MB 250 MB 550 MB

RP 3.8 MB 12 MB 34 MB 43 MB 120 MB 300 MB 310 MB 760 MB 1.0 GB

speedup with increased memory consumption. Table 2 shows how the number of
visited abstract states after 10,000 segmental simulations. The number of saved
summaries [21, Appendix B, Table 6] is approximately the number of visited
abstract states times k. The memory consumed by one summary is an integer
vector and a floating-point number that describe the effect on state and time,
respectively. The size of the abstraction is shown in Table 3.

We observe a trade-off between accuracy and performance: smaller abstract
states results in segmentswith fewer steps and thus slower simulations and formore
precise abstractions we need to save more summaries. Further, we can only reuse
simulations if they visit the same abstract states. This implies that the presented
approach does not scale favorably with the dimension of the studied system. To
handle many species, one can use the available memory only for the most impor-
tant abstract states, e.g. the most visited ones, and simulate normally in all other
regions. But there is an inherent trade-off between memory consumption and sim-
ulation speed as we can only reuse segments if we save them.

Q3: Comparison with Alternative Approaches

Comparison with τ -Leaping. We first compare the performance and accuracy of
our approach with the τ -leaping method implemented in StochPy [28], a widely
used stochastic modeling and simulation package. τ -leaping achieves very good
accuracy on the considered models. Quantitatively, it is very close to the SSA
control runs and typically provides slightly better results than our best setting
(compare Figs. 4, 5 and 6). On the other hand, we typically observe only a
moderate speedup (around one order of magnitude) with respect to the SSA.
Note that a direct comparison with our run-times is unfair as it is known that
StochPy uses an inefficient python-based random number generator that can
significantly slow down the simulation. For example, a single SSA simulation of
the RP model takes in StochPy 1000 s and τ -leaping achieves a 16-times speedup
while our SSA baseline takes around 9 s and the segmental simulation achieves
the speedup of a factor over 140 (to our baseline) with only a small drop in
the accuracy. On the other hand, for the PP model, τ -leaping provides only a
negligible speedup (below factor 2). Recall we observed a speedup factor between
12x and 70x depending on the required precision.

Comparison with Advanced Simulation Methods. A fair comparison with slow-
scale stochastic simulations [4,17,32] is problematic since, to our best knowledge,
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Table 4. Runtime comparison with [24] for 100,000 simulations.

Model
results presented in [24] Our results

SSA Adaptive hybrid Speedup SSA SEG(c = 1.5, k = 100) Speedup

RP 232 hours 3 hours 77x 252 hours 1.8 hours 140x

TS 47 days 1.1 days 43x 25 days 0.07 days 350x

there is no available implementation. Therefore, we focus on the comparison with
the results presented in [24] representing the state-of-the-art hybrid simulation
method. In Table 4, we compare the run-times of the adaptive hybrid simulation
(100,000 runs) on the repressilator and toggle switch models reported in [24]
(Fig. 1) with our approach. We report the runtimes only for the setting with
c = 1.5 and k = 100 which already leads to very good accuracy for these models.
The table also shows runtimes for the baseline SSA and the achieved speedup
factor to make the comparison between the different hardware configurations fair.
We observe that a significant computational gain (over two orders of magnitude)
is achieved by our approach.

Comparison with the Deep Learning Approaches. Finally, we compare with the
approach of [3] where a neural network is trained to provide a fast and accurate
generator of simulations in the original CRN. To this end, we use a simpler
variant of the toggle switch model considered in [3]. If we run more than 1000
simulations, a single simulation takes on average 0.0004 s which is comparable
with the neural-based generator (the authors report 0.0008 s per simulation).
Regarding the accuracy, we achieve comparable values of the EMD (note the
EMD is scaled in [3]). The key benefit of our approach, however, lies in the fact
that it does not require the computationally very demanding training phase.

7 Conclusion and Future Directions

We have proposed a novel simulation scheme enabling us to efficiently generate
a large number of simulation runs for complex CRNs. It is based on reusing
segments of the runs computed over abstract states but applied to concrete
states. Already our initial experiments demonstrate that the simulation scheme
preserves key dynamical and quantitative properties while providing a significant
computational gain over the existing approaches. On the conceptual level, we
define an executable abstraction of the CTMC, preserving the dynamics very
faithfully. In particular, we have the machinery to generate abstract simulation
runs, which take less space than the concrete ones, yet provide high precision on
the level of detail given by the population levels defined by the user.

In future work, we want to investigate the error with the goal of giving formal
error bounds. Further, we propose an adaptive version of the abstraction where
the population abstraction and the number of precomputed segments are refined
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or learned. Alternatively, instead of memorizing a discrete distribution over pre-
computed segments, we can generalize to unobserved behavior by learning some
continuous distribution.

Segmental simulation via abstract states can be understood as a general
framework for accelerating the simulation of population models. As such, it can
be combined with any method that predicts the evolution of such models. In
particular, it can naturally leverage an adaptive multi-scale approach where
different simulation techniques are used in different regions of the state-space.
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1 Introduction

Population protocols [3, 4] are a model of distributed computation by indistinguishable,
mobile finite-state agents, intensely investigated in recent years (see e.g. [2, 10]). Initially
introduced to model networks of passively mobile sensors, they have also been applied to the
analysis of chemical reactions under the name of chemical reaction networks (see e.g. [14]).

In a population protocol, a collection of agents, called a population, randomly interact
in pairs to decide whether their initial configuration satisfies a given property, e.g. whether
there are initially more agents in some state A than in some state B. Since agents are
indistinguishable and finite-state, their configuration at any time moment is completely
characterized by the mapping that assigns to each state the number of agents that currently
populate it. A protocol is said to compute a predicate if for every initial configuration where
the predicate holds, the agents eventually reach consensus 1, and they eventually reach
consensus 0 otherwise.

In a seminal paper, Angluin et al. proved that population protocols compute exactly
the predicates definable in Presburger arithmetic (PA) [5]. As part of the result, for every
Presburger predicate Angluin et al. construct a leaderless protocol that computes it. The
construction uses the quantifier elimination procedure for PA: every Presburger formula ϕ
can be transformed into an equivalent boolean combination of threshold predicates of the form
α · x > β and remainder predicates of the form α · x ≡ β (mod m), where α is an integer
vector, and β,m are integers [12]. Slightly abusing language, we call the set of these boolean
combinations quantifier-free Presburger arithmetic (QFPA)1. Using that PA and QFPA have
the same expressive power, Angluin et al. first construct protocols for all threshold and
remainder predicates, and then show that the predicates computed by protocols are closed
under negation and conjunction.

The construction of [5] is simple and elegant, but it produces large protocols. Given a
formula ϕ of QFPA, let n be the number of bits of the largest coefficient of ϕ in absolute
value, and let m be the number of atomic formulas of ϕ, respectively. The number of states
of the protocols of [5] grows exponentially in both n and m. In terms of |ϕ| (defined as the
sum of the number of variables, n, and m) they have O(2poly(|ϕ|)) states. This raises the
question of whether succinct protocols with O(poly(|ϕ|)) states exist for every formula ϕ of
QFPA. We give an affirmative answer by proving that every formula of QFPA has a succinct
and leaderless protocol.

Succinct protocols are the state-complexity counterpart of fast protocols, defined as
protocols running in polylogarithmic parallel time in the size of the population. Angluin
et al. showed that every predicate has a fast protocol with a leader [6], but Alistarh et al.,
based on work by Doty and Soloveichik [9], proved that in the leaderless case some predicates
need linear parallel time [1]. Our result shows that, unlike for time complexity, succinct
protocols can be obtained for every QFPA formula in both the leaderless case and the case
with leaders.

The proof of our result overcomes a number of obstacles. Designing succinct leaderless
protocols is particularly hard for inputs with very few input agents, because there are less
resources to simulate leaders. So we produce two completely different families of protocols,
one for small inputs with O(|ϕ|3) agents, and a second for large inputs with Ω(|ϕ|3) agents,
and combine them appropriately.

1 Remainder predicates cannot be directly expressed in Presburger arithmetic without quantifiers.
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Large inputs. The family for large inputs is based on our previous work [8]. However,
in order to obtain leaderless protocols we need a new succinct construction for boolean
combinations of atomic predicates. This obstacle is overcome by designing new protocols
for threshold and remainder predicates that work under reversible dynamic initialization.
Intuitively, agents are allowed to dynamically “enter” and “leave” the protocol through the
initial states (dynamic initialization). Further, every interaction can be undone (reversibility),
until a certain condition is met, after which the protocol converges to the correct output for
the current input. We expect protocols with reversible dynamic initialization to prove useful
in other contexts, since they allow a protocol designer to cope with “wrong” non-deterministic
choices.

Small inputs. The family of protocols for small inputs is designed from scratch. We exploit
that there are few inputs of small size. So it becomes possible to design one protocol for each
possible size of the population, and combine them appropriately. Once the population size is
fixed, it is possible to design agents that check if they have interacted with all other agents.
This is used to simulate the concatenation operator of sequential programs, which allows for
boolean combinations and succinct evaluation of linear combinations.

Relation to previous work. In [8], we designed succinct protocols with leaders for systems of
linear equations. More precisely, we constructed a protocol with O((m+k)(n+logm)) states
and O(m(n + logm)) leaders that computes a given predicate Ax ≥ c, where A ∈ Zm×k
and n is the number of bits of the largest entry in A and c, in absolute value. Representing
Ax ≥ c as a formula ϕ of QFPA, we obtain a protocol with O(|ϕ|2) states and O(|ϕ|2)
leaders that computes ϕ. However, in [8] no succinct protocols for formulas with remainder
predicates are given, and the paper makes extensive use of leaders.

Organization. Sections 2 and 3 introduce basic notation and definitions. Section 4 presents
the main result. Sections 5 and 6 present the constructions of the protocols for large and
small inputs, respectively. Section 7 presents conclusions. For space reasons, several proofs
are only sketched. Detailed proofs are given in the full version of this paper [7].

2 Preliminaries

Notation. We write Z to denote the set of integers, N to denote the set of non negative
integers {0, 1, . . .}, [n] to denote {1, 2, . . . , n}, and NE to denote the set of all multisets
over E, i.e. unordered vectors with components labeled by E. The size of a multiset
v ∈ NE is defined as |v| def=

∑
e∈E v(e). The set of all multisets over E with size s ≥ 0 is

E〈s〉
def=
{
v ∈ NE : |v| = s

}
. We sometimes write multisets using set-like notation, e.g. Ha, 2 ·bI

denotes the multiset v such that v(a) = 1, v(b) = 2 and v(e) = 0 for every e ∈ E \ {a, b}.
The empty multiset HI is instead denoted 0 for readability. For every u,v ∈ NE , we write
u ≥ v if u(e) ≥ v(e) for every e ∈ E. Moreover, we write u + v to denote the multiset
w ∈ NE such that w(e) def= u(e) + v(e) for every e ∈ E. The multiset u � v is defined
analogously with − instead of +, provided that u ≥ v.

Presburger arithmetic. Presburger arithmetic (PA) is the first-order theory of N with
addition, i.e. FO(N,+). For example, the PA formula ψ(x, y, z) = ∃x′∃z′(x = x′ + x′) ∧ (y =
z+z′)∧¬(z′ = 0) states that x is even and that y > z. It is well-known that for every formula
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of PA there is an equivalent formula of quantifier-free Presburger arithmetic (QFPA) [13],
the theory with syntax given by the grammar

ϕ(v) ::= a · v > b | a · v ≡c b | ϕ(v) ∧ ϕ(v) | ϕ(v) ∨ ϕ(v) | ¬ϕ(v)

where a ∈ ZX , b ∈ Z, c ∈ N≥2, and ≡c denotes equality modulo c. For example, the formula
ψ(x, y, z) above is equivalent to (x ≡2 0) ∧ (y − z ≥ 1). Throughout the paper, we refer to
any formula of QFPA, or the predicate NX → {0, 1} it denotes, as a predicate. Predicates of
the form a · v > b and a · v ≡c b are atomic, and they are called threshold and remainder
predicates respectively. The max-norm ‖ϕ‖ of a predicate ϕ is the largest absolute value
among all coefficients occurring within ϕ. The length len(ϕ) of a predicate ϕ is the number
of boolean operators occurring within ϕ. The bit length of a predicate ϕ, over variables X, is
defined as |ϕ| def= len(ϕ) + log‖ϕ‖+ |X|. We lift these definitions to sets of predicates in the
natural way: given a finite set P of predicates, we define its size size(P ) as the number of
predicates in P , its length as len(P ) def=

∑
ϕ∈P len(ϕ), its norm as ‖P‖ def= max{‖ϕ‖ : ϕ ∈ P},

and its bit length as |P | def= size(P ) + len(P ) + log‖P‖+ |X|. Note that len(P ) = 0 iff P only
contains atomic predicates.

3 Population protocols

A population protocol is a tuple P = (Q,T, L,X, I,O) where
Q is a finite set whose elements are called states;
T ⊆ {(p, q) ∈ NQ × NQ : |p| = |q|} is a finite set of transitions containing the set
{(p,p) : p ∈ NQ, |p| = 2};
L ∈ NQ is the leader multiset;
X is a finite set whose elements are called input variables;
I : X → Q is the input mapping;
O : Q→ {0, 1,⊥} is the output mapping.

For readability, we often write t : p 7→ q to denote a transition t = (p, q). Given ∆ ≥ 2,
we say that t is ∆-way if |p| ≤ ∆.

In the standard syntax of population protocols T is a subset of N2×N2, and O : Q→ {0, 1}.
These differences are discussed at the end of this section.

Inputs and configurations. An input is a multiset v ∈ NX such that |v| ≥ 2, and a
configuration is a multiset C ∈ NQ such that |C| ≥ 2. Intuitively, a configuration represents
a population of agents where C(q) denotes the number of agents in state q. The initial
configuration Cv for input v is defined as Cv

def= L+ Hv(x) · I(x) : x ∈ XI.
The support and b-support of a configuration C are respectively defined as JCK def= {q ∈ Q :

C(q) > 0} and JCKb = {q ∈ JCK : O(q) = b}. The output of a configuration C is defined as
O(C) def= b if JCKb 6= ∅ and JCK¬b = ∅ for some b ∈ {0, 1}, and O(C) def= ⊥ otherwise. Loosely
speaking, if O(q) = ⊥ then agents in state q have no output, and a population has output
b ∈ {0, 1} if all agents with output have output b.

Executions. A transition t = (p, q) is enabled in a configuration C if C ≥ p, and disabled
otherwise. Because of our assumption on T , every configuration enables at least one transition.
If t is enabled in C, then it can be fired leading to configuration C ′ def= C � p+ q, which we
denote C t−→ C ′. For every set of transitions S, we write C S−→ C ′ if C t−→ C ′ for some t ∈ S.
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We denote the reflexive and transitive closure of S−→ by S∗
−−→. If S is the set of all transitions

of the protocol under consideration, then we simply write −→ and ∗−→.
An execution is a sequence of configurations σ = C0C1 · · · such that Ci −→ Ci+1 for every

i ∈ N. We write σi to denote configuration Ci. The output of an execution σ is defined
as follows. If there exist i ∈ N and b ∈ {0, 1} such that O(σi) = O(σi+1) = · · · = b, then
O(σ) def= b, and otherwise O(σ) def= ⊥.

Computations. An execution σ is fair if for every configuration D the following holds:

if |{i ∈ N : σi
∗−→ D}| is infinite, then |{i ∈ N : σi = D}| is infinite.

In other words, fairness ensures that an execution cannot avoid a configuration forever. We
say that a population protocol computes a predicate ϕ : NX → {0, 1} if for every v ∈ NX
and every fair execution σ starting from Cv, it is the case that O(σ) = ϕ(v). Two protocols
are equivalent if they compute the same predicate. It is known that population protocols
compute precisely the Presburger-definable predicates [5, 11].

I Example 1. Let Pn = (Q,T,0, {x}, I, O) be the protocol where Q def= {0, 1, 2, 3, . . . , 2n},
I(x) def= 1, O(a) = 1 def⇐⇒ a = 2n, and T contains a transition, for each a, b ∈ Q, of the form
Ha, bI 7→ H0, a+ bI if a+ b < 2n, and Ha, bI 7→ H2n, 2nI if a+ b ≥ 2n. It is readily seen that Pn
computes ϕ(x) def= (x ≥ 2n). Intuitively, each agent stores a number, initially 1. When two
agents meet, one of them stores the sum of their values and the other one stores 0, with sums
capping at 2n. Once an agent reaches this cap, all agents eventually get converted to 2n.

Now, consider the protocol P ′n = (Q′, T ′,0, {x}, I ′, O′), where Q′ def= {0, 20, 21, . . . , 2n},
I ′(x) def= 20, O′(a) = 1 def⇐⇒ a = 2n, and T ′ contains a transition for each 0 ≤ i < n of the
form H2i, 2iI 7→ H0, 2i+1I, and a transition for each a ∈ Q′ of the form Ha, 2nI 7→ H2n, 2nI.
Using similar arguments as above, it follows that P ′n also computes ϕ, but more succinctly:
While Pn has 2n + 1 states, P ′n has only n+ 1 states.

Types of protocols. A protocol P = (Q,T, L,X, I,O) is
leaderless if |L| = 0, and has |L| leaders otherwise;
∆-way if all its transitions are ∆-way;
simple if there exist f, t ∈ Q such that O(f) = 0, O(t) = 1 and O(q) = ⊥ for every
q ∈ Q \ {f, t} (i.e., the output is determined by the number of agents in f and t.)

Protocols with leaders and leaderless protocols compute the same predicates [5]. Every
∆-way protocol can be transformed into an equivalent 2-way protocol with a polynomial
increase in the number of transitions [8]. Finally, every protocol can be transformed into an
equivalent simple protocol with a polynomial increase in the number of states [7].

4 Main result

The main result of this paper is the following theorem:

I Theorem 2. Every predicate ϕ of QFPA can be computed by a leaderless population
protocol P with O(poly(|ϕ|)) states. Moreover, P can be constructed in polynomial time.

To prove Theorem 2, we first provide a construction that uses ` ∈ O(|ϕ|3) leaders. If
there are at least |v| ≥ ` input agents v (large inputs), we will show how the protocol can
be made leaderless by having agents encode both their state and the state of some leader.
Otherwise, |v| < ` (small inputs), and we will resort to a special construction, with a single
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leader, that only works for populations of bounded size. We will show how the leader can be
simulated collectively by the agents. Hence, we will construct succinct protocols computing
ϕ for large and small inputs, respectively. Formally, we prove:

I Lemma 3. Let ϕ be a predicate over variables X. There exist ` ∈ O(|ϕ|3) and leaderless
protocols P≥` and P<` with O(poly(|ϕ|)) states such that:
(a) P≥` computes predicate (|v| ≥ `)→ ϕ(v), and
(b) P<` computes predicate (|v| < `)→ ϕ(v).

Theorem 2 follows immediately from the lemma: it suffices to take the conjunction of
both protocols, which only yields a quadratic blow-up on the number of states, using the
classical product construction [3]. The rest of the paper is dedicated to proving Lemma 3.
Parts (a) and (b) are shown in Sections 5 and 6, respectively.

In the remainder of the paper, whenever we claim the existence of some protocol P, we
also claim polynomial-time constructibility of P without mentioning it explicitly.

5 Succinct protocols for large populations

We show that, for every predicate ϕ, there exists a constant ` ∈ O(|ϕ|3) and a succinct
protocol P≥` computing (|v| ≥ `) → ϕ(v). Throughout this section, we say that n ∈ N is
large if n ≥ `, and that a protocol computes ϕ for large inputs if it computes (|v| ≥ `)→ ϕ(v).

We present the proof in a top-down manner, by means of a chain of statements of the
form “A← B, B ← C, C ← D, and D”. Roughly speaking, and using notions that will be
defined in the forthcoming subsections:

Section 5.1 introduces protocols with helpers, a special class of protocols with leaders.
The section shows: ϕ is computable for large inputs by a succinct leaderless protocol (A),
if it is computable for large inputs by a succinct protocol with helpers (B).
Section 5.2 defines protocols that simultaneously compute a set of predicates. The section
proves: (B) holds if the set P of atomic predicates occurring within ϕ is simultaneously
computable for large inputs by a succinct protocol with helpers (C).
Section 5.3 introduces protocols with reversible dynamic initialization. The section shows:
(C) holds if each atomic predicate of P is computable for large inputs by a succinct
protocol with helpers and reversible dynamic initialization (D).
Section 5.4 shows that (D) holds by exhibiting succinct protocols with helpers and
reversible dynamic initialization that compute atomic predicates for large inputs.

5.1 From protocols with helpers to leaderless protocols
Intuitively, a protocol with helpers is a protocol with leaders satisfying an additional property:
adding more leaders does not change the predicate computed by the protocol. Formally, let
P = (Q,T, L,X, I,O) be a population protocol computing a predicate ϕ. We say that P is a
protocol with helpers if for every L′ � L the protocol P ′ = (Q,T, L′, X, I,O) also computes
ϕ, where L′ � L def= ∀q ∈ Q : (L′(q) = L(q) = 0 ∨ L′(q) ≥ L(q) > 0). If |L| = `, then we say
that P is a protocol with ` helpers.

I Theorem 4. Let P = (Q,T, L,X, I,O) be a ∆-way population protocol with `-helpers
computing some predicate ϕ. There exists a 2-way leaderless population protocol with O(` ·
|X|+ (∆ · |T |+ |Q|)2) states that computes (|v| ≥ `)→ ϕ(v).
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Proof sketch. By [8, Lemma 3], P can be transformed into a 2-way population protocol
(with helpers2) computing the same predicate ϕ, and with at most |Q|+ 3∆ · |T | states. Thus,
we assume P to be 2-way in the rest of the sketch.

For simplicity, assume X = {x} and L = H3 · q, 5 · q′I; that is, P has 8 helpers, and
initially 3 of them are in state q, and 5 are in q′. We describe a leaderless protocol P ′ that
simulates P for every input v such that |v| ≥ |L| = `. Intuitively, P ′ runs in two phases:

In the first phase each agent gets assigned a number between 1 and 8, ensuring that
each number is assigned to at least one agent (this is the point at which the condition
|v| ≥ ` is needed). At the end of the phase, each agent is in a state of the form (x, i),
meaning that the agent initially represented one unit of input for variable x, and that it
has been assigned number i. To achieve this, initially every agent is placed in state (x, 1).
Transitions are of the form H(x, i), (x, i)I 7→ H(x, i+ 1), (x, i)I for every 1 ≤ i ≤ 7. The
transitions guarantee that all but one agent is promoted to (x, 2), all but one to (x, 3),
etc. In other words, one agent is “left behind” at each step.
In the second phase, an agent’s state is a multiset: agents in state (x, i) move to state
HI(x), qI if 1 ≤ i ≤ 3, and to state HI(x), q′I if 4 ≤ i ≤ 8. Intuitively, after this move
each agent has been assigned two jobs: simultaneously simulate a regular agent of P
starting at state x, and a helper of L starting at state q or q′. Since in the first phase
each number is assigned to at least one agent, P ′ has at least 3 agents simulating helpers
in state q, and at least 5 agents simulating helpers in state q′. There may be many more
helpers, but this is harmless, because, by definition, additional helpers do not change the
computed predicate.
The transitions of P ′ are designed according to this double role of the agents of P ′. More
precisely, for all multisets p, q,p′, q′ of size two, Hp, qI 7→ Hp′, q′I is a transition of P ′ iff
(p+ q) −→ (p′ + q′) in P. J

5.2 From multi-output protocols to protocols with helpers
A k-output population protocol is a tuple Q = (Q,T, L,X, I,O) where O : [k]×Q→ {0, 1,⊥}
and Qi def= (Q,T, L,X, I,Oi) is a population protocol for every i ∈ [k], where Oi denotes the
mapping such that Oi(q)

def= O(i, q) for every q ∈ Q. Intuitively, since each Qi only differs
by its output mapping, Q can be seen as a single population protocol whose executions
have k outputs. More formally, Q computes a set of predicates P = {ϕ1, ϕ2, . . . , ϕk} if Qi
computes ϕi for every i ∈ [k]. Furthermore, we say that Q is simple if Qi is simple for
every i ∈ [k]. Whenever the number k is irrelevant, we use the term multi-output population
protocol instead of k-output population protocol.

I Proposition 5. Assume that every finite set A of atomic predicates is computed by some
|A|-way multi-output protocol with O(|A|3) helpers and states, and O(|A|5) transitions. Every
QFPA predicate ϕ is computed by some simple |ϕ|-way protocol with O(|ϕ|3) helpers and
states, and O(|ϕ|5) transitions.

Proof sketch. Consider a binary tree decomposing the boolean operations of ϕ. We design
a protocol for ϕ by induction on the height of the tree.

The case where the height is 0, and ϕ is atomic, is trivial. We sketch the induction
step for the case where the root is labeled with ∧, that is ϕ = ϕ1 ∧ ϕ2, the other cases
are similar. By induction hypothesis, we have simple protocols P1,P2 computing ϕ1, ϕ2,

2 Lemma 3 of [8] deals with leaders and not the more specific case of helpers. Nonetheless, computation
under helpers is preserved as the input mapping of P remains unchanged in the proof of the lemma.
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respectively. Let tj , fj be the output states of Pj for j ∈ {1, 2} such that Oj(tj) = 1 and
Oj(fj) = 0. We add two new states t, f (the output states of the new protocol) and an
additional helper starting in state f. To compute ϕ1 ∧ϕ2 we add the following transitions for
every b1 ∈ {t1, f1}, b2 ∈ {t2, f2}, and b ∈ {t, f}: Hb1, b2, bI 7→ Hb1, b2, tI if b1 = t1 ∧ b2 = t2,
and Hb1, b2, bI 7→ Hb1, b2, fI otherwise. The additional helper computes the conjunction as
desired. J

5.3 From reversible dynamic initialization to multi-output protocols
Let P = {ϕ1, . . . , ϕk} be a set of k ≥ 2 atomic predicates of arity n ≥ 1 over a set
X = {x1, . . . , xn} of variables. We construct a multi-output protocol P for P of size
poly(|ϕ1|+ · · ·+ |ϕk|).

Let P1, . . . ,Pk be protocols for ϕ1, . . . , ϕk. Observe that P cannot be a “product protocol”
that executes P1, . . . ,Pk synchronously. Indeed, the states of such a P are tuples (q1, . . . , qk)
of states of P1, . . . ,Pk, and so P would have exponential size in k. Further, P cannot execute
P1, . . . ,Pk asynchronously in parallel, because, given an input x ∈ Nn, it must dispatch k ·x
agents (x to the input states of each Pj), but it only has x. Such a P would need (k − 1)|x|
helpers, which is not possible, because a protocol of size poly(|ϕ1|+ · · ·+ |ϕk|) can only use
poly(|ϕ1|+ · · ·+ |ϕk|) helpers, whatever the input x.

The solution is to use a more sophisticated parallel asynchronous computation. Consider
two copies of inputs, denoted X = {x1, . . . , xn} and X = {x1, . . . , xn}. For each predicate
ϕ over X, consider predicate ϕ̃ over X ∪ X satisfying ϕ̃(x,x) = ϕ(kx + x) for every
(x,x) ∈ NX∪X . We obtain ϕ̃(x,x) = ϕ(x) whenever kx + x = x, e.g. for x := bx

k c and
x := xmod k. With this choice, P needs to dispatch a total of k (|x+ x|) ≤ |x|+n · (k− 1)2

agents to compute ϕ̃1(x,x), . . . , ϕ̃k(x,x). That is, n · (k − 1)2 helpers are sufficient to
compute P. Formally, we define ϕ̃ in the following way:

For ϕ(x) =
(

n∑

i=1
αixi > β

)
, we define ϕ̃(x,x) :=

(
n∑

i=1
(k · αi)xi + αixi > β

)

and similarly for modulo predicates. For instance, if ϕ(x1, x2) = 3x1 − 2x2 > 6 and k = 4,
then ϕ̃(x1, x1, x2, x2) = 12x1 + 3x1 − 8x2 − 2x2 > 6. As required, ϕ̃(x,x) = ϕ(kx+ x).

Let us now describe how the protocol P computes ϕ̃1(x,x), . . . , ϕ̃k(x,x). Let P̃1, . . . , P̃k
be protocols computing ϕ̃1, . . . , ϕ̃k. Let X = {x1, . . . , xn} be the input states of P, and let
xj

1, . . . , xj
n and xj

1, . . . , x
j
n be the input states of P̃j for every 1 ≤ j ≤ k. Protocol P repeatedly

chooses an index 1 ≤ i ≤ n, and executes one of these two actions: (a) take k agents from
xi, and dispatch them to x1

i, . . . , xk
i (one agent to each state); or (b) take one agent from xi

and (k − 1) helpers, and dispatch them to x1
i, . . . , xk

i. The index and the action are chosen
nondeterministically. Notice that if for some input xi, all ` agents of xi are dispatched, then
kxj

i + xj
i = ` for all j. If all agents of xi are dispatched for every 1 ≤ i ≤ n, then we say that

the dispatch is correct.
The problem is that, because of the nondeterminism, the dispatch may or may not be

correct. Assume, e.g., that k = 5 and n = 1. Consider the input x1 = 17, and assume that
P has n · (k − 1)2 = 16 helpers. P may correctly dispatch x1 = b 17

5 c = 3 agents to each of
x1

1, . . . , x1
5 and x1 = (17mod 5) = 2 to each of x1

1, . . . , x1
5; this gives a total of (3 + 2) · 5 = 25

agents, consisting of the 17 agents for the input plus 8 helpers. However, it may also wrongly
dispatch 2 agents to each of x1

1, . . . , x1
5 and 4 agents to each of x1

1, . . . , x1
5, with a total of

(2 + 4) · 5 = 30 agents, consisting of 14 input agents plus 16 helpers. In the second case, each
Pj wrongly computes ϕ̃j(2, 4) = ϕj(2 · 5 + 4) = ϕj(14), instead of the correct value ϕj(17).
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To solve this problem we ensure that P can always recall agents already dispatched to
P̃1, . . . , P̃k as long as the dispatch is not yet correct. This allows P to “try out” dispatches
until it dispatches correctly, which eventually happens by fairness. For this we design P so
that (i) the atomic protocols P̃1, . . . , P̃k can work with inputs agents that arrive over time
(dynamic initialization), and (ii) P̃1, . . . , P̃k can always return to their initial configuration
and send agents back to P, unless the dispatch is correct (reversibility). To ensure that
P stops redistributing after dispatching a correct distribution, it suffices to replace each
reversing transition p 7→ q by transitions p+ HxiI 7→ q + HxiI, one for each 1 ≤ i ≤ n: All
these transitions become disabled when x1, . . . , xn are not populated.

Reversible dynamic initialization. Let us now formally introduce the class of protocols with
reversible dynamic initialization that enjoys all properties needed for our construction. A
simple protocol with reversible dynamic initialization (RDI-protocol for short) is a tuple
P = (Q,T∞, T†, L,X, I,O), where P∞ = (Q,T∞, L,X, I,O) is a simple population protocol,
and T† is the set of transitions making the system reversible, called the RDI-transitions.

Let T def= T∞ ∪ T†, and let In def= {inx : x ∈ X} and Out def= {outx : x ∈ X} be the sets of
input and output transitions, respectively, where inx def= (0, HI(x)I) and outx def= (HI(x)I,0). An
initialization sequence is a finite execution π ∈ (T ∪ In ∪ Out)∗ from the initial configuration
L′ with L′ � L. The effective input of π is the vector w such that w(x) def= |π|inx

− |π|outx

for every x ∈ X. Intuitively, a RDI-protocol starts with helpers only, and is dynamically
initialized via the input and output transitions.

Let f, t ∈ Q be the unique states of P withO(f) = 0 andO(t) = 1. For every configuration
C, let [C] def= {C ′ : C ′(f) + C ′(t) = C(f) + C(t) and C ′(q) = C(q) for all q ∈ Q \ {f, t}}.
Intuitively, all configurations C ′ ∈ [C] are equivalent to C in all but the output states.

An RDI-protocol is required to be reversible, that is for every initialization sequence π
with effective input w, and such that L′ π−→ C for some L′ � L, the following holds:

if C T∗
−−→ D and D′ ∈ [D], then D′ T

∗
−−→ C ′ for some C ′ ∈ [C], and

C(I(x)) ≤ w(x) for all x ∈ X.
Intuitively, an RDI-protocol can never have more agents in an input state than the effective
number of agents it received via the input and output transitions. Further, an RDI-protocol
can always reverse all sequences that do not contain input or output transitions. This
reversal does not involve the states f and t, which have a special role as output states. Since
RDI-protocols have a default output, we need to ensure that the default output state is
populated when dynamic initialization ends, and reversal for f and t would prevent that.

An RDI-protocol P computes ϕ if for every initialization sequence π with effective input
w such that L′ π−→ C for some L′ � L, the standard population protocol P∞ computes ϕ(w)
from C (that is with T† disabled). Intuitively, if the dynamic initialization terminates, the
RDI-transitions T† become disabled, and then the resulting standard protocol P∞ converges
to the output corresponding to the dynamically initialized input.

I Theorem 6. Assume that for every atomic predicate ϕ, there exists a |ϕ|-way RDI-protocol
with O(|ϕ|) helpers, O(|ϕ|2) states and O(|ϕ|3) transitions that computes ϕ. For every finite
set P of atomic predicates, there exists a |P |-way simple multi-output protocol, with O(|P |3)
helpers and states, and O(|P |5) transitions, that computes P .
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5.4 Atomic predicates under reversible dynamic initialization
Lastly, we show that atomic predicates are succinctly computable by RDI-protocols:

I Theorem 7. Every atomic predicate ϕ over variables X can be computed by a simple
|ϕ|-way population protocol with reversible dynamic initialization that has O(|ϕ|) helpers,
O(|ϕ|2) states, and O(|ϕ|3) transitions.
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Figure 1 Partial representation of the protocol computing 5x + 6y ≥ 4 (mod 7) as a Petri net,
where places (circles), transitions (squares) and tokens (smaller filled circles) represent respectively
states, transitions and agents. Non-helper agents remember their input variable (labeled here within
tokens). The depicted configuration is obtained from input x = 2, y = 1 by firing the bottom
leftmost transition (dark blue).

The protocols for arbitrary threshold and remainder predicates satisfying the conditions
of Theorem 7, and their correctness proofs, are given in [7]. Note that the threshold protocol
is very similar to the protocol for linear inequalities given in Section 6 of [8]. Thus, as an
example, we will instead describe how to handle the remainder predicate 5x− y ≡7 4. Note,
that the predicate can be rewritten as (5x+ 6y ≥ 4 (mod 7)) ∧ (5x+ 6y 6≥ 5 (mod 7)). As
we can handle negations and conjunctions separately in Section 5.2, we will now explain the
protocol for ϕ def= 5x+ 6y ≥ 4 (mod 7). The protocol is partially depicted in Figure 1 using
Petri net conventions for the graphical representation.

The protocol has an input state x for each variable x ∈ X, output states f and t, a neutral
state 0, and numerical states of the form +2i for every 0 ≤ i ≤ n, where n is the smallest
number such that 2n > ‖ϕ‖. Initially, (at least) one helper is set to f and (at least) 2n
helpers set to 0. In order to compute 5x+ 6y ≥ 4 (mod 7) for x := r and y := s, we initially
place r and s agents in the states x and y, i.e., the agents in state x encode the number r in
unary, and similarly for y. The blue transitions on the left of Figure 1 “convert” each agents
in input states to a binary representation of their corresponding coefficient. In our example,
agents in state x are converted to a(x) = 5 = 01012 by putting one agent in 4 and another
one in 1. Since two agents are needed to encode 5, the transition “recruits” one helper from
state 0. Observe that, since the inputs can be arbitrarily large, but a protocol can only
use a constant number of helpers, the protocol must reuse helpers in order to convert all
agents in input states. This happens as follows. If two agents are in the same power of
two, say +2i, then one of them can be “promoted” to +2i+1, while the other one moves to
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state 0, “liberating” one helper. This allows the agents to represent the overall value of all
converted agents in the most efficient representation. That is, from any configuration, one
can always reach a configuration where there is at most one agent in each place 20, . . . , 2n−1,
there are at most the number of agents converted from input places in place 2n, and hence
there are at least n agents in place 0, thus ready to convert some agent from the input place.
Similar to promotions, “demotions” to smaller powers of two can also happen. Thus, the
agents effectively shift through all possible binary representations of the overall value of
all converted agents. The ≡7 transition in Figure 1 allows 3 agents in states 4, 2 and 1
to “cancel out” by moving to state 0, and it moves the output helper to f. Furthermore,
there are RDI-transitions that allow to revert the effects of conversion and cancel transitions.
These are not shown in Figure 1.

We have to show that this protocol computes ϕ under reversible dynamic initialization.
First note, that while dynamic initialization has not terminated, all transitions have a
corresponding reverse transition. Thus, it is always possible to return to wrong initial
configurations. However, reversing the conversion transitions can create more agents in input
states than the protocol effectively received. To forbid this, each input agent is “tagged” with
its variable (see tokens in Figure 1). Therefore, in order to reverse a conversion transitions,
the original input agent is needed. This implies, that the protocol is reversible.

Next, we need to argue that the protocol without the RDI-transitions computes ϕ
once the dynamic initialization has terminated. The agents will shift through the binary
representations of the overall value. Because of fairness, the ≡7 transition will eventually
reduce the overall value to at most 6. There is a ≥ 4-transition which detects the case where
the final value is at least 4 and moves the output helper from f to state t. Notice that
whenever transition ≡7 occurs, we reset the output by moving the output helper to state f.

6 Succinct protocols for small populations

We show that for every predicate ϕ and constant ` = O(|ϕ|3), there exists a succinct protocol
P<` that computes the predicate (|v| < `)→ ϕ(v). In this case, we say that P<` computes
ϕ for small inputs. Further, we say that a number n ∈ N (resp. an input v) is small with
respect to ϕ if n ≤ ` (resp. |v| ≤ `). We present the proof strategy in a top-down manner.

Section 6.1 proves: There is a succinct leaderless protocol P that computes ϕ for small
inputs (A), if for every small n some succinct protocol Pn computes ϕ for all inputs of
size n (B). Intuitively, constructing a succinct protocol for all small inputs reduces to the
simpler problem of constructing a succinct protocol for all small inputs of a fixed size.
Section 6.2 introduces halting protocols. It shows: There is a succinct protocol that
computes ϕ for inputs of size n, if for every atomic predicate ψ of ϕ some halting succinct
protocol computes ψ for inputs of size n (C). Thus, constructing protocols for arbitrary
predicates reduces to constructing halting protocols for atomic predicates.
Section 6.3 proves (C). Given a threshold or remainder predicate ϕ and a small n, it
shows how to construct a succinct halting protocol that computes ϕ for inputs of size n.

6.1 From fixed-sized protocols with one leader to leaderless protocols
We now define when a population protocol computes a predicate for inputs of a fixed size.
Intuitively, it should compute the correct value for every initial configurations of this size; for
inputs of other sizes, the protocol may converge to the wrong result, or may not converge.

STACS 2020
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I Definition 8. Let ϕ be a predicate and let i ≥ 2. A protocol P computes ϕ for inputs of
size i, denoted “P computes (ϕ | i)”, if for every input v of size i, every fair execution of P
starting at Cv stabilizes to ϕ(v).

We show that if, for each small number i, some succinct protocol computes (ϕ | i), then
there is a single succinct protocol that computes ϕ for all small inputs.

I Theorem 9. Let ϕ be a predicate over a set of variables X, and let ` ∈ N. Assume that for
every i ∈ {2, 3, . . . , `−1}, there exists a protocol with at most one leader and at most m states
that computes (ϕ | i). Then, there is a leaderless population protocol with O(`4 ·m2 · |X|3)
states that computes (x < `)→ ϕ(x).

Proof sketch. Fix a predicate ϕ and ` ∈ N. For every 2 ≤ i < `, let Pi be a protocol
computing (ϕ | i). We describe the protocol P = (Q,T,X, I,O) that computes (x ≥
`) ∨ ϕ(x) ≡ (x < `)→ ϕ(x). The input mapping I is the identity. During the computation,
agents never forget their initial state – that is, all successor states of an agent are annotated
with their initial state. The protocol initially performs a leader election. Each provisional
leader stores how many agents it has “knocked out” during the leader election in a counter
from 0 to `− 1. After increasing the counter to a given value i < `, it resets the state of i
agents and itself to the corresponding initial state of Pi+1, annotated with X, and initiates a
simulation of Pi+1. When the counter of an agent reaches `− 1, the agent knows that the
population size must be ≥ `, and turns the population into a permanent 1-consensus. Now,
if the population size i is smaller than `, then eventually a leader gets elected who resets the
population to the initial population of Pi. Since Pi computes (ϕ | i), the simulation of Pi
eventually yields the correct output. J

6.2 Computing boolean combinations of predicates for fixed-size inputs
We want to produce a population protocol P for a boolean combination ϕ of atomic predicates
(ϕi)i∈[k] for which we have population protocols (Pi)i∈[k]. As in Section 5.3, we cannot use a
standard “product protocol” that executes P1, . . . ,Pk synchronously because the number of
states would be exponential in k. Instead, we want to simulate the concatenation of (Pi)i∈[k].
However, this is only possible if for all i ∈ [k], the executions of Pi eventually “halt”, i.e.
some agents are eventually certain that the output of the protocol will not change anymore,
which is not the case in general population protocols. For this reason we restrict our attention
to “halting” protocols.

I Definition 10. Let P be a simple protocol with output states f and t. We say that P is a
halting protocol if every configuration C reachable from an initial configuration satisfies:

C(f) = 0 ∨ C(t) = 0,
C
∗−→ C ′ ∧ C(q) > 0⇒ C ′(q) > 0 for every q ∈ {f, t} and every configuration C ′.

Intuitively, a halting protocol is a simple protocol in which states f and t behave like
“final states”: If an agent reaches q ∈ {f, t}, then the agent stays in q forever. In other words,
the protocol reaches consensus 0 (resp. 1) iff an agent ever reaches f (resp. t).

I Theorem 11. Let k, i ∈ N. Let ϕ be a boolean combination of atomic predicates (ϕj)j∈[k].
Assume that for every j ∈ [k], there is a simple halting protocol Pj = (Qj , Lj , X, Tj , Ij , Oj)
with one leader computing (ϕj | i). Then there exists a simple halting protocol P that
computes (ϕ | i), with one leader and O (|X| · (len(ϕ) + |Q1|+ . . .+ |Qk|)) states.
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Proof sketch. We only sketch the construction for ϕ = ϕ1 ∧ ϕ2. The main intuition is
that, since P1 and P2 are halting, we can construct a protocol that, given an input v, first
simulates P1 on v, and, after P1 halts, either halts if P1 converges to 0, or simulates P2 on
v if P1 converges to 1. Each agent remembers in its state the input variable it corresponds
to, in order to simulate P2 on v. J

6.3 Computing atomic predicates for fixed-size inputs
We describe a halting protocol that computes a given threshold predicate for fixed-size inputs.

I Theorem 12. Let ϕ(x,y) def= α · x − β · y > 0. For every i ∈ N, there exists a halting
protocol with one leader and O(i2(|ϕ|+ log i)3) states that computes (ϕ | i).

We first describe a sequential algorithm Greater-Sum(x,y), that for every input x,y satisfying
|x| + |y| = i decides whether α · x − β · y > 0 holds. Then we simulate Greater-Sum by
means of a halting protocol with i agents.

Since each agent can only have O(log i+ log |ϕ|) bits of memory (the logarithm of the
number of states), Greater-Sum must use at most O(i · (log i + log |ϕ|)) bits of memory,
otherwise it cannot be simulated by the agents. Because of this requirement, Greater-Sum
cannot just compute, store, and then compare α · x and β · y; this uses too much memory.

Greater-Sum calls procedures Probe1(j) and Probe2(j) that return the j-th bits of αx
and βy, respectively, where j = 1 is the most significant bit. Since |x| ≤ i, and the
largest constant in α is at most ||ϕ||, we have α · x ≤ i · ||ϕ||, and so α · x has at most
m

def= |ϕ|+ blog(i)c+ 1 bits, and the same holds for βy. So we have 1 ≤ j ≤ m. Let us first
describe Greater-Sum, and then Probe1(j); the procedure Probe2(j) is similar.

Greater-Sum(x,y) loops through j = 1, . . . ,m. For each j, it calls Probe1(j) and Probe2(j).
If Probe1(j) > Probe2(j), then it answers ϕ(x,y) = 1, otherwise it moves to j + 1. If
Greater-Sum reaches the end of the loop, then it answers ϕ(x,y) = 0. Observe that
Greater-Sum only needs to store the current value of j and the bits returned by Probe1(j)
and Probe2(j). Since j ≤ m, Greater-Sum only needs O(log(|ϕ|+ log i)) bits of memory.

Probe1(j) uses a decreasing counter k = m, . . . , j to successively compute the bits b1(k)
of α · x, starting at the least significant bit. To compute b1(k), the procedure stores the
carry ck ≤ i of the computation of b1(k + 1); it then computes the sum sk := ck +α(k) · x
(where α(k) is the k-th vector of bits of α), and sets bk := sk mod 2 and ck−1 := sk ÷ 2. The
procedure needs O(log(|ϕ|+ log i)) bits of memory for counter k, log(i) + 1 bits for encoding
sk, and O(log(i)) bits for encoding ck. So it only uses O(log(|ϕ|+ log i)) bits of memory.

Let us now simulate Greater-Sum(x,y) by a halting protocol with one leader agent.
Intuitively, the protocol proceeds in rounds corresponding to the counter k. The leader
stores in its state the value j and the current values of the program counter, of counter k,
and of variables bk, sk, and ck. The crucial part is the implementation of the instruction
sk := ck +α(k) · x of Probe1(j). In each round, the leader adds input agents one by one. As
the protocol only needs to work for populations with i agents, it is possible for each agent to
know if it already interacted with the leader in this round, and for the leader to count the
number of agents it has interacted with this round, until it reaches i to start the next round.

7 Conclusion and further work

We have proved that every predicate ϕ of quantifier-free Presburger arithmetic (QFPA)
is computed by a leaderless protocol with poly(|ϕ|) states. Further, the protocol can be
computed in polynomial time. The number of states of previous constructions was exponential
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both in the bit-length of the coefficients of ϕ, and in the number of occurrences of boolean
connectives. Since QFPA and PA have the same expressive power, every computable predicate
has a succinct leaderless protocol. This result completes the work initiated in [8], which also
constructed succinct protocols, but only for some predicates, and with the help of leaders.

It is known that protocols with leaders can be exponentially faster than leaderless protocols.
Indeed, every QFPA predicate is computed by a protocol with leaders whose expected time
to consensus is polylogarithmic in the number of agents [6], while every leaderless protocol
for the majority predicate needs at least linear time in the number of agents [1]. Our result
shows that, if there is also an exponential gap in state-complexity, then it must be because
some family of predicates have protocols with leaders of logarithmic size, while all leaderless
families need polynomially many states. The existence of such a family is an open problem.

The question of whether protocols with poly(|ϕ|) states exist for every PA formula ϕ,
possibly with quantifiers, also remains open. However, it is easy to prove that no algorithm
for the construction of protocols from PA formulas runs in time 2p(n) for any polynomial p.

I Theorem 13. For every polynomial p, every algorithm that accepts a formula ϕ of PA as
input, and returns a population protocol computing ϕ, runs in time 2ω(p(|ϕ|)).

Therefore, if PA also has succinct protocols, then they are very hard to find.
Our succinct protocols for QFPA have slow convergence (in the usual parallel time model,

see e.g. [2]), since they often rely on exhaustive exploration of a number of alternatives, until
the right one is eventually hit. The question of whether every QFPA predicate has a succinct
and fast protocol is very challenging, and we leave it open for future research.
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In a seminal paper, Angluin et al. proved that population protocols decide exactly the
predicates definable in Presburger arithmetic (PA) [7]. One direction of the result is proved
in [5] by means of a construction that takes as input a Presburger predicate and outputs a
protocol that decides it. The construction uses the quantifier elimination procedure for PA:
every Presburger formula φ can be transformed into an equivalent boolean combination of
threshold predicates of the form a⃗ · x⃗ ≥ c and remainder predicates of the form a⃗ · x⃗ ≡m c,
where a⃗ is an integer vector, c and m are integers, and ≡m denotes congruence modulo m [14].
Slightly abusing language, we call the set of these boolean combinations quantifier-free
Presburger arithmetic (QFPA).1 Using that PA and QFPA have the same expressive power,
Angluin et al. first construct protocols for all threshold and remainder predicates, and then
show that the predicates computed by protocols are closed under negation and conjunction.

The two fundamental parameters of a protocol are the expected number of interactions
until a stable consensus is reached, and the number of states of each agent. The expected
number of interactions divided by the number of agents, also called the parallel execution
time, is an adequate measure of the runtime of a protocol when interactions occur in parallel
according to a Poisson process [6]. The number of states measures the complexity of an
agent. In natural computing applications, where a state corresponds to a chemical species, it
is difficult to implement protocols with many states.

Given a formula φ of QFPA, let m be the number of bits of the largest coefficient of φ

in absolute value, and let s be the number of atomic formulas of φ, respectively. Let n be
the number of agents participating in the protocol. The construction of [5] yields a protocol
with O(s · n2 log n) expected interactions. Observe that the protocol does not have a leader
(an auxiliary agent helping the other agents to coordinate), and agents have a fixed number
of states, independent of the size of the population. Under these assumptions, which are also
the assumptions of this paper, every protocol for the majority predicate needs Ω(n2) expected
interactions [1], and so the construction is nearly optimal.2 However, the number of states is
Ω(2m+s), or Ω(2|φ|) in terms of the number |φ| of bits needed to write φ with coefficients in
binary. This is well beyond the only known lower bound, showing that for every construction
there exist an infinite subset of predicates φ for which the construction produces protocols
with Ω(|φ|1/4) states [9]. So the constructions of [5], and also those of [6, 3, 13], produce fast
but very large protocols.

In [9, 8] Blondin et al. exhibit a construction that produces succinct protocols with
O(poly(|φ|)) states. However, they do not analyse their stabilisation time. We demonstrate
that they run in Ω(2n) expected interactions. Loosely speaking, the reason is the use of
transitions that “revert” the effect of other transitions. This allows the protocol to “try out”
different distributions of agents, retracing its steps until it hits the right one, but also makes
it very slow. So [9, 8] produce succinct but very slow protocols.

Is it possible to produce protocols that are both fast and succinct? We give an affirmative
answer. We present a construction that yields for every formula φ of QFPA a protocol with
O(poly(|φ|)) states and O(poly(|φ|) · n2) expected interactions. So our construction achieves
optimal stabilisation time in n, and, at the same time, yields more succinct protocols than
the construction of [8]. Moreover, for inputs of size Ω(|φ|) (a very mild constraint when
agents are molecules), we obtain protocols with O(|φ|) states.

1 Remainder predicates cannot be directly expressed in Presburger arithmetic without quantifiers.
2 If the model is extended by allowing a leader (and one considers the slightly weaker notion of convergence

time), or the number of states of an agent is allowed to grow with the population size, O(n · polylog(n))
interactions can be achieved [6, 3, 2, 13, 12].
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Our construction relies on population computers, a carefully crafted generalization of
the population protocol model of [5]. Population computers extend population protocols in
three ways. First, they can exhibit certain k-way interactions between more than two agents.
Second, they have a more flexible output condition, defined by an arbitrary function that
assigns an output to every subset of states, instead of to every state.3 Finally, population
computers can use helpers: auxiliary agents that, like leaders, help regular agents to coordinate
themselves but whose number, contrary to leaders, is not known a priori. We exhibit succinct
population computers for all Presburger predicates in which every run is finite, and show
how to translate such population computers into fast and succinct population protocols.

Organization of the paper. We give preliminary definitions in Section 2 and introduce
population computers in Section 3. Section 4 gives an overview of the rest of the paper and
summarises our main results. Section 5 describes why previous constructions were either not
succinct or slow. Section 6 describes population computers for every Presburger predicate.
Section 7 converts these computers into succinct population protocols. Section 8 shows that
the resulting protocols are also fast.

An extended version of this paper, containing the details of the constructions and all
proofs, can be found at [11]. It contains several appendices. Appendix A completes the
proofs of Section 5. For the other appendices, there is no one-to-one correspondence to
sections of the main paper, instead they are grouped by the construction they analyse.
Appendix B concerns the construction of Section 6, but also analyses speed. The four parts
of our conversion process are analysed separately, in Appendices C, D, E and F. Appendix G
combines the previous to prove the complete conversion theorem. Appendix H summarises
the definitions for our speed analyses, and Appendix I contains minor technical lemmata.

2 Preliminaries

Multisets. Let E be a finite set. A multiset over E is a mapping E → N, and NE denotes the
set of all multisets over E. We sometimes write multisets using set-like notation, e.g. Ha, 2 · bI
denotes the multiset v such that v(a) = 1, v(b) = 2 and v(e) = 0 for every e ∈ E \ {a, b}.
The empty multiset HI is also denoted ∅.

For E′ ⊆ E, v(E′) :=
∑

e∈E′ v(e) is the number of elements in v that are in E′. The size
of v ∈ NE is |v| := v(E). The support of v ∈ NE is the set supp(v) := {e ∈ E | v(e) > 0}. If
E ⊆ Z, then we let sum(v) :=

∑
e∈E e · v(e) denote the sum of all the elements of v. Given

u, v ∈ NE , u + v and u − v denote the multisets given by (u + v)(e) := u(e) + v(e) and
(u − v)(e) := u(e) − v(e) for every e ∈ E. The latter is only defined if u ≥ v.

Multiset rewriting transitions. A multiset rewriting transition, or just a transition, is a
pair (r, s) ∈ NE × NE , also written r 7→ s. A transition t = (r, s) is enabled at v ∈ NE if
v ≥ r, and its occurrence leads to v′ := v − r + s, denoted v →t v′. We call v →t v′ a step.
The multiset v is terminal if it does not enable any transition. An execution is a finite or
infinite sequence v0, v1, ... of multisets such that v →t1 v1 →t2 · · · for some sequence t1, t2, ...

of transitions. A multiset v′ is reachable from v if there is an execution v0, v1, ..., vk with
v0 = v and vk = v′; we also say that the execution leads from v to v′. An execution is a run
if it is infinite or it is finite and its last multiset is terminal. A run v0, v1, ... is fair if it is
finite, or it is infinite and for every multiset v, if v is reachable from vi for infinitely many
i ≥ 0, then v = vj for some j ≥ 0.

3 Other output conventions for population protocols have been considered [10].
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Presburger arithmetic. Angluin et al. proved that population protocols decide exactly
the predicates Nk → {0, 1} definable in Presburger arithmetic, the first-order theory of
addition, which coincide with the semilinear predicates [14]. Using the quantifier elimination
procedure of Presburger arithmetic, every Presburger predicate can be represented as a
Boolean combination of threshold and remainder predicates. A predicate φ : Nv → {0, 1} is a
threshold predicate if φ(x1, ..., xv) = (

∑v
i=1 aixi ≥ c), where a1, ..., av, c ∈ Z, and a remainder

predicate if φ(x1, ..., xv) = (
∑v

i=1 aixi ≡m c), where a1, ..., av ∈ Z, m ≥ 1, c ∈ {0, ..., m−1},
and a ≡m b denotes that a is congruent to b modulo m. We call the set of these formulas
quantifier-free Presburger arithmetic, or QFPA. The size of a predicate is the minimal number
of bits of a formula of QFPA representing it, with coefficients written in binary.

3 Population Computers

Population computers are a generalization of population protocols that allows us to give very
concise descriptions of our protocols for Presburger predicates.

Syntax. A population computer is a tuple P = (Q, δ, I, O, H), where:
Q is a finite set of states. Multisets over Q are called configurations.
δ ⊆ NQ ×NQ is a set of multiset rewriting transitions r 7→ s over Q such that |r| = |s| ≥ 2
and |supp(r)| ≤ 2. Further, we require that δ is a partial function, so s1 = s2 for all
r, s1, s2 with (r1 7→ s1), (r2 7→ s2) ∈ δ. A transition r 7→ s is binary if |r| = 2. We call a
population computer is binary if every transition binary.
I ⊆ Q is a set of input states. An input is a configuration C such that supp(C) ⊆ supp(I).
O : 2Q → {0, 1, ⊥} is an output function. The output of a configuration C is O(supp(C)).
An output function O is a consensus output if there is a partition Q = Q0 ∪ Q1 of Q such
that O(Q′) = 0 iff Q′ ⊆ Q0, O(Q′) = 1 iff Q′ ⊆ Q1, and O(Q′) = ⊥ otherwise.
H ∈ NQ\I is a multiset of helper agents or just helpers. A helper configuration is a
configuration C such that supp(C) ⊆ supp(H) and C ≥ H.

Graphical notation. We visualise population computers as Petri nets (see e.g. Figure 3).
Places (circles) and transitions (squares) represent respectively states and transitions. To
visualise configurations, we draw agents as tokens (smaller filled circles).

Semantics. Intuitively, a population computer decides which output (0 or 1) corresponds
to an input CI as follows. It adds to the agents of CI an arbitrary helper configuration CH

of agents to produce the initial configuration CI + CH . Then it starts the computation and
lets it stabilise to configurations of output 1 or output 0. Formally, the initial configurations
of P for input CI are all configurations of the form CI + CH for some helper configuration
CH . A run C0C1... stabilises to b if there exists an i ≥ 0 such that O(supp(Ci)) = b and Ci

only reaches configurations C ′ with O(supp(C ′)) = b. An input CI has output b if for every
initial configuration C0 = CI + CH , every fair run starting at C0 stabilises to b. A population
computer P decides a predicate φ : NI → {0, 1} if every input CI has output φ(CI).

Terminating and bounded computers. A population computer is bounded if no run starting
at an initial configuration C is infinite, and terminating if no fair run starting at C is infinite.
Observe that bounded population computers are terminating.
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Size and adjusted size. Let P = (Q, δ, I, O, H) be a population computer. We assume
that O is described as a boolean circuit with size(O) gates. For every transition t = (r 7→ s)
let |t| := |r|. The size of P is size(P) := |Q| + |H| + size(O) +

∑
t∈δ|t|. If P is binary, then

(as for population protocols) we do not count the transitions and define the adjusted size
size2(P) := |Q| + |H| + size(O). Observe that both the size of a transition and the size of
the helper multiset are the number of elements, i.e. the size in unary, strengthening our later
result about the existence of succinct population computers.

Population protocols. A population computer P = (Q, δ, I, O, H) is a population protocol
if it is binary, has no helpers (H = ∅), and O is a consensus output. It is easy to see that
this definition coincides with the one of [5]. The speed of a binary population computer with
no helpers, and so in particular of a population protocol, is defined as follows. We assume a
probabilistic execution model in which at configuration C two agents are picked uniformly at
random and execute a transition, if possible, moving to a configuration C ′ (by assumption
they enable at most one transition). This is called an interaction. Repeating this process, we
generate a random execution C0C1... . We say that the execution stabilises at time t if Ct

reaches only configurations C ′ with O(supp(C ′)) = O(supp(Ct)), and we say that P decides
φ within T interactions if it decides φ and E(t) ≤ T . See e.g. [6] for more details.

Population computers vs. population protocols. Population computers generalise popula-
tion protocols in three ways:

They have non-binary transitions, but only those in which the interacting agents populate
at most two states. For example, Hp, p, qI 7→ Hp, q, oI (which in the following is written
simply as p, p, q 7→ p, q, o) is allowed, but p, q, o 7→ p, p, q is not.
They use a multiset H of auxiliary helper agents, but the addition of more helpers does
not change the output of the computation. Intuitively, contrary to the case of leaders,
agents do not know any upper bound on the number of helpers, and so the protocol
cannot rely on this bound for correctness or speed.
They have a more flexible output condition. Loosely speaking, population computers
accept by stabilising the population to an accepting set of states, instead of to a set of
accepting states.

4 Overview and Main Results

Given a predicate φ ∈ QFPA over variables x1, ..., xv, the rest of this paper shows how
to construct a fast and succinct population protocol deciding φ. First, Section 5 gives an
overview of previous constructions and explains why they are not fast or not succinct. Then
we proceed in five steps:
1. Construct the predicate double(φ) ∈ QFPA over variables x1, ..., xv, x′

1, ..., x′
v by syn-

tactically replacing every occurrence of xi in φ by xi +2x′
i. For example, if φ = (x−y ≥ 0)

then double(φ) = (x + 2x′ − y − 2y′ ≥ 0). Observe that |double(φ)| ∈ O(|φ|).
2. Construct a succinct bounded population computer P deciding double(φ).
3. Convert P into a succinct population protocol P ′ deciding φ for inputs of size Ω(|φ|).
4. Prove that P ′ runs within O(n3) interactions.
5. Use a refined running-time analysis to prove that P ′ runs within O(n2) interactions.

Section 6 constructs bounded population computers for all predicates φ ∈ QFPA. This
allows us to conduct steps 1 and 2. More precisely, the section proves:
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▶ Theorem 1. For every predicate φ ∈ QFPA there exists a bounded population computer of
size O(|φ|) that decides φ.

Section 7 proves the following conversion theorem (steps 3 and 4).

▶ Theorem 2. Every bounded population computer of size m deciding double(φ) can be
converted into a terminating population protocol with O(m2) states which decides φ in at
most O(f(m) n3) interactions for inputs of size Ω(m), for some function f .

Section 8 introduces α-rapid population computers, where α ≥ 1 is a certain parameter,
and uses a more detailed analysis to show that the population protocols of Theorem 2 are in
fact smaller and faster (step 5):

▶ Theorem 3.
(a) The population computers constructed in Theorem 1 are O(|φ|3)-rapid.
(b) Every α-rapid population computer of size m deciding double(φ) can be converted into a

terminating population protocol with O(m) states that decides φ in O(α m4n2) interactions
for inputs of size Ω(m).

The restriction to inputs of size Ω(m) is very mild. Moreover, it can be lifted using a
technique of [8], at the price of adding additional states (and at no cost regarding asymptotic
speed, since the speed of the new protocol only changes for inputs of size O(m)):

▶ Corollary 4. For every φ ∈ QFPA there exists a terminating population protocol with
O(poly(|φ|)) states that decides φ in O(f(|φ|) n2) interactions, for a function f .

It is known that the majority predicate can only be decided in Ω(n2) interactions by
population protocols [1], so — as a general construction — our result is optimal w.r.t. time.
Regarding space, an Ω(|φ|1/4) lower bound was shown in [9], leaving a polynomial gap.

5 Previous Constructions: Angluin et al. and Blondin et al.

The population protocols for a quantifier free Presburger predicate φ constructed in [5] are
not succinct, i.e. do not have O(|φ|a) states for any constant a, and those of [8] are not fast,
i.e. do not have speed O(|φ|anb) for any constants a, b. We explain why with the help of
some examples.

▶ Example 5. Consider the protocol of [5] for the predicate φ = (x − y ≥ 2d). The states are
the triples (ℓ, b, u) where ℓ ∈ {A, P}, b ∈ {Y, N} and −2d ≤ u ≤ 2d. Intuitively, ℓ indicates
whether the agent is active (A) or passive (P), b indicates whether it currently believes
that φ holds (Y) or not (N), and u is the agent’s wealth, which can be negative. Agents
for input x are initially in state (A, N, 1), and agents for y in (A, N, −1). If two passive
agents meet their encounter has no effect. If at least one agent is active, then the result of
the encounter is given by the transition (∗, ∗, u), (∗, ∗, u′) 7→ (A, b, q), (P, b, r) where b = Y

if u + u′ ≥ 2d else N ; q = max(−2d, min(2d, u + u′)); and r = (u + u′) − q. The protocol
stabilises after O(n2 log n) expected interactions [5], but it has 2d+1 + 1 states, exponentially
many in |φ| ∈ Θ(d).

▶ Example 6. We give a protocol for φ = (x − y ≥ 2d) with a polynomial number of states.
This is essentially the protocol of [8]. We remove states and transitions from the protocol of
Example 5, retaining only the states (ℓ, b, u) such that u is a power of 2, and some of the
transitions involving these states:
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(∗, ∗, 2i), (∗, ∗, 2i) 7→ (A, N, 2i+1), (P, N, 0) for every 0 ≤ i ≤ d − 2
(∗, ∗, 2d−1), (∗, ∗, 2d−1) 7→ (A, Y, 2d), (P, Y, 0)

(∗, ∗, −2i), (∗, ∗, −2i) 7→ (A, N, −2i+1), (P, N, 0) for every 0 ≤ i ≤ d − 1
(∗, ∗, 2i), (∗, ∗, −2i) 7→ (A, N, 0), (P, N, 0) for every 0 ≤ i ≤ d − 1

The protocol is not yet correct. For example, for d = 1 and the input x = 2, y = 1, the
protocol can reach in one step the configuration in which the three agents (two x-agents and
one y-agent) are in states (A, Y, 2), (P, Y, 0), (A, N, −1), after which it gets stuck. In [8] this
is solved by adding “reverse” transitions:

(A, N, 2i+1), (P, N, 0) 7→ (A, N, 2i), (P, N, 2i) for every 0 ≤ i ≤ d − 2
(A, Y, 2d), (P, Y, 0) 7→ (A, N, 2d−1), (P, N, 2d−1)

(A, N, −2i+1), (P, N, 0) 7→ (A, N, −2i), (A, N, −2i) for every 0 ≤ i ≤ d − 1

The protocol has only Θ(d) states and transitions, but runs within Ω(n2d−2) interactions.
Consider the inputs x, y such that x−y = 2d, and let n := x+y. Say that an agent is positive
at a configuration if it has positive wealth at it. The protocol can only stabilise if it reaches
a configuration with exactly one positive agent with wealth 2d. Consider a configuration
with i < 2d positive agents. The next configuration can have i − 1, i, or i + 1 positive agents.
The probability of i + 1 positive agents is Ω(1/n), while that of i − 1 positive agents is only
O(1/n2), and the expected number of interactions needed to go from 2d positive agents to
only 1 is Ω(n2d−1) [11, Appendix A.1].

▶ Example 7. Given protocols P1, P2 with n1 and n2 states deciding predicates φ1 and φ2,
Angluin et al. construct in [5] a protocol P for φ1 ∧ φ2 with n1 · n2 states. It follows that the
number of states of a protocol for φ := φ1 ∧ · · · ∧ φs grows exponentially in s, and so in |φ|.
Blondin et al. give an alternative construction with polynomially many states [8, Section 5.3].
However, their construction contains transitions that, as in the previous example, reverse the
effect of other transitions, and make the protocol very slow. The problem is already observed
in the toy protocol with states q1, q2 and transitions q1, q1 7→ q2, q2 and q1, q2 7→ q1, q1.
(Similar transitions are used in the initialisation of [8].) Starting with an even number n ≥ 2
of agents in q1, eventually all agents move to q2 and stay there, but the expected number of
interactions is Ω(2n/10) [11, Appendix A.2].

6 Succinct Bounded Population Computers for Presburger Predicates

In Sections 6.1 and 6.2 we construct population computers for remainder and threshold
predicates in which all coefficients are powers of two. We present the remainder case in detail,
and sketch the threshold case. The generalization to arbitrary coefficients is achieved by means
of a gadget very similar to the one we used to compute boolean combinations of predicates.
This later gadget is presented in Section 6.3, and so we introduce the generalization there.

6.1 Population computers for remainder predicates
Let Pow+ = {2i | i ≥ 0} be the set of positive powers of 2.

We construct population computers Pφ for remainder predicates φ :=
∑v

i=1 aixi ≡m c,
where ai ∈ Pow+ ∩ {0, ..., m−1} for every 1 ≤ i ≤ v, m ∈ N, and c ∈ {0, ..., m−1}. We
say that a finite multiset r over Pow+ represents the residue rep(r) := sum(r)mod m.
For example, if m = 11 then r18 := H23, 23, 21I represents 7. Accordingly, we call the
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multisets over Pow+ representations. A representation of degree d only contains elements
of Pow+

d := {2d, 2d−1, ..., 20}. A representation r is a support representation if r(x) ≤ 1 for
every x ∈ Pow+; so its represented value is completely determined by the support. For
example, r18 is not a support representation of 7, but H25, 23I is.
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Figure 1 (middle) Graphical Petri net representation (see Section 3) of population computer
for the predicate φ1 ∨ φ2 with φ1 = (8x + 5y ≡11 4) and φ2 = (y − 2x ≥ 5). All dashed arrows
implicitly lead to the reservoir state 0. It has 22 helpers although only 9 are drawn for space reasons.
(left) decision diagram for output function of remainder predicate 8x + 5y ≡11 4. It checks if the
total value is 15 or 4. Starting at the top node of the diagram: if state 8 is populated, we move to
the left child, otherwise to the right child; at the left child, if state 4 is populated we move to the
right child, etc. (right) decision diagram for output function of threshold predicate y − 2x ≥ 5.

We proceed to construct Pφ. Let us give some intuition first. Pφ has Pow+
d ∪ {0} as set

of states. We extend the notion of representation to configurations by disregarding agents in
state 0; a configuration is therefore a support representation if all states except 0 have at
most one agent. The initial states of Pφ are chosen so that every initial configuration for an
input (x1, ..., xv) is a representation of the residue z :=

∑v
i=1 aixi mod m. The transitions

transform this initial representation of z into a support representation of z. Whether z ≡m c

holds or not depends only on the support of this representation, and the output function
thus returns 1 for the supports satisfying z ≡m c, and 0 otherwise. Let us now formally
describe Pφ for φ :=

∑v
i=1 aixi ≡m c where ai ∈ Pow+ ∩ {0, ..., m−1}.

States and initial states. Let d := ⌈log2 m⌉. The set of states is Q = Pow+
d ∪ {0}. The

set of initial states is I := {a1, ..., av}. Observe that an input CI = Hx1 · a1, ..., xv · avI is a
representation of z, but not necessarily a support representation.

Transitions. Transitions ensure that non-support representations, i.e. representations with
two or more agents in some state q, are transformed into representations of the same residue
“closer” to a support representation. For q ∈ 20, ..., 2d−1 we introduce the transition:

2i, 2i 7→ 2i+1, 0 for 0 ≤ i ≤ d − 1 〈combine〉
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For q = 2d we introduce a transition that replaces an agent in 2d by a multiset of agents
r with sum(r) = 2d − m, preserving the residue. Let bdbd−1...b0 be the binary encoding of
2d − m, and let {i1, ..., ij} be the positions such that bi1 = · · · = bij

= 1. The transition is:

2d, 0, ..., 0 7→ 2i1 , ..., 2ij 〈modulo〉

These transitions are enough, but we also add a transition that takes d agents in 2d and
replaces them by agents with sum d · 2d mod m. Intuitively, this makes the protocol faster.
Let bdbd−1...b0 and {i1, ..., ij} be as above, but for d · 2d mod m instead of 2d − m.

2d, ..., 2d 7→ 2i1 , ..., 2ij , 0, ..., 0 〈fast modulo〉

Helpers. We set H := H3d · 0I, i.e. the computer initially places at least 3d helper agents in
state 0. This makes sure one can always execute the next 〈modulo〉 or 〈fast modulo〉 transition:
if no more agents can be combined, there are at most d agents in the states 20, ..., 2d−1.
Thus, there are at least 2d agents in the states 0 and 2d, enabling one of these transitions.
Observe that for every initial configuration CI + CH we have sum(CI + CH) = sum(CI), and
so, abusing language, every initial configuration for CI is also a representation of z.

Output function. The computer eventually reaches a support configuration with at most
one agent in every state except for 0. Thus, for every support set S ⊆ Q, we define O(S) := 1
if sum(S) ≡m c, and O(S) = 0 else. We show the existence of a small boolean circuit for the
output function O in the proof of Lemma 8; this can be found in [11, Appendix B.1].

▶ Lemma 8. Let φ :=
∑v

i=1 aixi ≡m c, where ai ∈ {2d−1, ..., 21, 20} for every 1 ≤ i ≤ v and
c ∈ {0, ..., m−1} with d := ⌈log2 m⌉. There is a bounded computer of size O(d) deciding φ.

The left half of Figure 1 shows the population computer for φ = (8x + 5y ≡11 4).

6.2 Population computers for threshold predicates
We sketch the construction of population computers Pφ for threshold predicates φ :=∑v

i=1 aixi ≥ c, where ai ∈ {2j , 2−j | j ≥ 0} for every 1 ≤ i ≤ v and c ∈ N. As the
construction is similar to the construction for remainder, we will focus on the differences and
refer to [11, Appendix B.2] for details.

As for remainder, we work with representations that are multisets of powers of 2. However,
they represent the sum of their elements (without modulo) and we allow both positive and
negative powers of 2. Similar to the remainder construction, the computer transforms any
representation into a support representation without changing the represented value. Then,
the computer decides the predicate using only the support of that representation.

Again, there are 〈combine〉 transitions that allow agents with the same value to com-
bine. Instead of modulo transitions, 〈cancel〉 transitions further simplify the representation:
2i, −2i 7→ 0, 0. Note that even after exhaustively applying 〈combine〉 and 〈cancel〉 there can
still be many agents in 2d or many agents in −2d. This has two consequences:

In the construction for general predicates of Section 6.3, we need that computers for
remainder and threshold move most agents to state 0. In the remainder construction, all
but a constant number of agents are moved to 0. In contrast, the threshold construction
does not have this property. Thus, we do not design a single computer for a given
threshold predicate φ but a family: one for every degree d larger than some minimum
degree d0 ∈ Ω(|φ|). Intuitively, larger degrees result in a larger fraction of agents in 0.
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Assume we detect agents in 2d (−2d is analogous). If there are many, the predicate is
true. However, if there is just one, then the represented value might be small, due to
negative contributions −20, ..., −2d−1. We cannot distinguish the two cases, so we add
transition 〈cancel 2nd highest〉: 2d, −2d−1 7→ 2d−1, 0. It ensures that agents cannot be
present in both 2d and −2d−1; therefore, an agent in 2d certifies a value of at least 2d−1.

The right half of Figure 1 shows the population computer for φ = (−2x + y ≥ 5) with degree
d = 4. [11, Appendix B.2] proves:

▶ Lemma 9. Let φ :=
∑v

i=1 aixi ≥ c, where ai ∈ {2j , 2−j | j ≥ 0} for every 1 ≤ i ≤ v.
For every d ≥ max{⌈log2 c⌉ + 1, ⌈log2|a1|⌉, ..., ⌈log2|av|⌉} there is a bounded computer of size
O(d) that decides φ.

6.3 Population computers for all Presburger predicates
We present a construction that, given threshold or remainder predicates φ1, ..., φs, yields a
population computer P deciding an arbitrary given boolean combination B(φ1, ..., φs) of
φ1, ..., φs. We only sketch the construction, see [11, Appendix B.3] for details. We use the
example φ1 = (y − 2x ≥ 5), φ2 = (8x + 5y ≡11 4) and B(φ1, φ2) = φ1 ∨ φ2. The result of
the construction for this example is shown in Figure 1. The construction has 6 steps:

1. Rewrite Predicates. The constructions in Sections 6.1 and 6.2 only work for predicates
where all coefficients are powers of 2. We transform each predicate φi into a new predicate φ′

i

where all coefficients are decomposed into their powers of 2. In our example, φ′
1 := φ1 because

all coefficients are already powers of 2. However, φ2(x, y) = (8x + 5y ≡11 4) is rewritten as
φ′

2(x, y1, y2) := (8x + 4y1 + 1y2 ≡11 4) because 5 = 4 + 1. Note that φ2(x, y) = φ′
2(x, y, y)

holds for every x, y ∈ N. Let r be the size of the largest split of a coefficient, i.e. r = 2 in the
example.

2. Construct Subcomputers. For every 1 ≤ i ≤ s, if φi is a remainder predicate, then let
Pi be the computer defined in Section 6.1. If φi is a threshold predicate, then let Pi be the
computer of Section 6.2, with d = d0 + ⌈log2 s⌉. We explain this choice of d in step 5.

3. Combine Subcomputers. Take the disjoint union of Pi, but merging their 0 states.
More precisely, rename all states q ∈ Qi to (q)i, with the exception of state 0. Construct a
computer with the union of all the renamed states and transitions. Figure 1 shows the Petri
net representation of the computer so obtained for our example. We call the combined 0
state reservoir as it holds agents with no value that are needed for various tasks like input
distribution.

4. Input Distribution. For each variable xi add a corresponding new input state xi. Then
add a transition that takes an agent in state xi and agents in 0 and distributes agents to the
input states of the subcomputers that correspond to xi. In our example, we add two states x

and y and the transitions x, 0 7→ (1)1 , (8)2 and y, 0, 0 7→ (−2)1 , (4)2 , (1)2. The distribution
for x needs one helper, because we need one agent in each subcomputer. The distribution
for y needs two helpers, one for P1 and two for P2, as 5y was split into 4y1 + 1y2. This
way, once the input states are empty, the correct value is distributed to each subcomputer.
Crucially, this input distribution can be fast as it is not reversible.
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5. Add Extra Helpers. In addition to all helpers from the subcomputers, add r − 1 more
helpers to state 0. Intuitively, this allows to distribute the first input agent. Because of
our choice for d in threshold subcomputers, each subcomputer returns most agents back to
state 0. More precisely, for each distribution the number of agents that do not get returned
to 0 only increases by at most 1

s (per subcomputer). So in total only one agent is “consumed”
per distribution and enough agents are returned to 0 for the next distribution to occur. In
our example, the agents that stay in each of the s = 2 subcomputers only increases by at
most 1

2 per distribution. (In fact, remainder subcomputers return all distributed agents.)

6. Combine Output. Note that we can still decide φi from the support of the states in the
corresponding subcomputer Pi. We compute the output for φ by combining the outputs of
the subcomputers P1, ..., Ps according to B(φ1, ..., φs). In our example, we set the output to
1 if and only if the output of P1 or P2 is 1.

In [11, Appendix B.3], we show that this computer is succinct, correct and bounded:

▶ Theorem 1. For every predicate φ ∈ QFPA there exists a bounded population computer of
size O(|φ|) that decides φ.

7 Converting Population Computers to Population Protocols

In this section we prove Theorem 2. We proceed in four steps, which must be carried out in
the given order. Section 7.1 converts any bounded computer P for double(φ) of size m into
a binary bounded computer P1 with O(m2) states. Section 7.2 converts P1 into a binary
bounded computer P2 with a marked consensus output function (a notion defined in the
section). Section 7.3 converts P2 into a binary bounded computer P3 for φ — not double(φ)

— with a marked consensus output function and no helpers. Section 7.4 shows that P3 runs
within O(n3) interactions. Finally, we convert P3 to a binary terminating (not necessarily
bounded) computer P4 with a normal consensus output and no helpers, also running within
O(n3) interactions. This uses standard ideas; for space reasons it is described only in the full
version at [11, Appendix F]. Similarly, the other conversions and results are only sketched,
with details in [11].

7.1 Removing multiway transitions
We transform a bounded population computer with k-way transitions r 7→ s such that
|supp(r)| ≤ 2 into a binary bounded population computer. Let us first explain why the
construction introduced in [9, Lemma 3], which works for arbitrary transitions r 7→ s, is too
slow. In [9], the 3-way transition t : q1, q2, q3 7→ q′

1, q′
2, q′

3 is simulated by the transitions

t1 : q1, q2 7→ w, q12 t2 : q12, q3 7→ c12, q′
3 t3 : q′

3, w 7→ q′
1, q′

2 t1 : w, q12 7→ q1, q2

Intuitively, the occurrence of t1 indicates that two agents in q1 and q2 want to execute t, and
are waiting for an agent in q3. If the agent arrives, then all three execute t2t3, which takes
them to q′

1, q′
2, q′

3. Otherwise, the two agents must be able to return to q1, q2 to possibly
execute other transitions. This is achieved by the “revert” transition t1. The construction
for a k-way transition has “revert” transitions t1, ..., tk−2. As in Example 6 and Example 7,
these transitions make the final protocol very slow.

We present a gadget without “revert” transitions that works for k-way transitions r 7→ s

satisfying |supp(r)| ≤ 2. Figure 2 illustrates it, using Petri net notation, for the 5-way
transition t : H3p, 2qI 7→ Ha, b, c, d, eI. In the gadget, states p and q are split into (p, 0), ..., (p, 3)
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Figure 2 Simulating the 5-way transition H3 · p, 2 · q 7→ a, b, c, d, eI by binary transitions.

and (q, 0), ..., (q, 2). Intuitively, an agent in (q, i) acts as representative for a group of i agents
in state q. Agents in (p, 3) and (q, 2) commit to executing t by executing the binary transition
〈commit〉. After committing, they move to the states a, ..., e together with the other members
of the group, who are “waiting” in the states (p, 0) and (q, 0). Note that 〈commit〉 is binary
because of the restriction |supp(r)| ≤ 2 for multiway transitions.

To ensure correctness of the conversion, agents can commit to transitions if they represent
more than the required amount. In this case, the initiating agents would commit to a
transition and then elect representatives for the superfluous agents, before executing the
transition. This requires additional intermediate states.

[11, Appendix C] formalises the gadget and proves its correctness and speed.

7.2 Converting output functions to marked-consensus output functions
We convert a computer with an arbitrary output function into another one with a marked-
consensus output function. An output function is a marked-consensus output function if there
are disjoint sets of states Q0, Q1 ⊆ Q such that O(S) := b if S ∩ Qb ≠ ∅ and S ∩ Q1−b = ∅,
for b ∈ {0, 1}, and O(S) := ⊥ otherwise. Intuitively, for every S ⊆ Q we have O(S) = 1
if all agents agree to avoid Q0 (consensus), and at least one agent populates Q1 (marked
consensus). We only sketch the construction, a detailed description as well as a graphical
example can be found in [11, Appendix D].

Our starting point is some bounded and binary computer P = (Q, δ, I, O, H), e.g. as
constructed in Section 7.1. Let (G, E) be a boolean circuit with only NAND-gates computing
the output function O. We simulate P by a computer P ′ with a marked consensus output and
O(|Q| + |G|) states. This result allows us to bound the number of states of P ′ by applying
well known results on the complexity of Boolean functions.

Intuitively, P ′ consists of two processes running asynchronously in parallel. The first one
is (essentially, see below) the computer P itself. The second one is a gadget that simulates
the execution of G on the support of the current configuration of P . Whenever P executes a
transition, it raises a flag indicating that the gadget must be reset (for this, we duplicate
each state q ∈ Q into two states (q, +) and (q, −), indicating whether the flag is raised or
lowered). Crucially, P is bounded, and so it eventually performs a transition for the last
time. This resets the gadget for the last time, after which the gadget simulates (G, E) on the
support of the terminal configuration reached by P.
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The gadget is designed to be operated by one state-helper for each q ∈ Q, with set of
states Qsupp(q), and a gate-helper for each gate g ∈ G, with set of states Qgate(g), defined as
follows:

Qsupp(q) := {q} × {0, 1, !}. These states indicate that q belongs/does not belong to the
support of the current configuration (states (q, 0) and (q, 1)), or that the output has
changed from 0 to 1 (state (q, !)).
Qgate(g) := {g} × {0, 1, ⊥}3 for each gate g ∈ G, storing the current values of the two
inputs of the gate and its output. Uninitialised values are stored as ⊥.

Recall that a population computer must also remain correct for a larger number of helpers.
This is ensured by letting all helpers populating one of these sets, say Qsupp(q), perform
a leader election; whenever two helpers in states of Qsupp(q) meet, one of them becomes
a non-leader, and a flag requesting a complete reset of the gadget is raised. All resets are
carried out by a reset-helper with set of states Qreset := {0, ..., |Q| + |G|}, initially in state 0.
(Reset-helpers also carry out their own leader election!) Whenever a reset is triggered, the
reset-helper contacts all other |Q| + |G| helpers in round-robin fashion, asking them to reset
the computation.

Eventually the original protocol P has already reached a terminal configuration with
some support Qterm, each set Qsupp(q) and Qgate(g) is populated by exactly one helper, and
all previous resets are terminated. From this moment on, P never changes its configuration.
The |Q| state-helpers detect the support Qterm of the terminal configuration by means of
transitions that move them to the states Qterm × {1} and (Q \ Qterm) × {0}; the gate-helpers
execute (G, E) on input Q′ by means of transitions that move them to the states describing
the correct inputs and outputs for each gate. State-helpers use Q × {!} as intermediate states,
indicating that the circuit must recompute its output.

It remains to choose the sets Q0 and Q1 of states the marked consensus output. We do it
according to the output b of the output gate gout ∈ G: Qb is the set of states of Qgate(gout)
corresponding to output b.

7.3 Removing helpers
We convert a bounded binary computer P deciding the predicate double(φ) over variables
x1, ..., xk, x′

1, ..., x′
k into a computer P ′ with no helpers deciding φ over variables x1, ..., xk.

In [8], a protocol with helpers and set of states Q is converted into a protocol without helpers
with states Q × Q. We sketch a better construction that avoids the quadratic blowup. A
detailed description can be found in [11, Appendix E].

Let us give some intuition first. All agents of an initial configuration of P ′ are in
input states. P ′ simulates P by liberating some of these agents and transforming them
into helpers, without changing the output of the computation. For this, two agents in
an input state xi are allowed to interact, producing one agent in x′

i and one “liberated”
agent, which can be used as a helper. This does not change the output of the computation,
because double(φ)(..., xi, ..., x′

i, ...) = double(φ)(..., xi − 2, ..., x′
i + 1, ...) holds by definition

of double(φ).
Figure 3 illustrates this idea. Assume P has input states x, y, x′, y′ and helpers H =

Hq1, q2, q3, q4I, as shown on the left-hand side. Assume further that P computes a predicate
double(φ)(x, y, x′, y′). The computer P ′ is shown on the right of the figure. The additional
transitions liberate agents, and send them to the helper states H. Observe that the initial
states of P ′ are only x and y. Let us see why P ′ decides φ(x, y). As the initial configuration of
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Figure 3 Illustration in graphical Petri net notation (see Section 3) of construction that removes
helpers. Initial states are highlighted.

P ′ for an input x, y puts no agents in x′, y′, the computer P ′ produces the same output on input
x, y as P on input x, y, 0, 0. Since P decides double(φ) and double(φ)(x, y, 0, 0) = φ(x, y) by
the definition of double(φ), we are done. We make some remarks:

P ′ may liberate more agents than necessary to simulate the multiset H of helpers of P.
This is not an issue, because by definition additional helpers do not change the output of
the computation.
If the input is too small, P ′ cannot liberate enough agents to simulate H. Therefore, the
new computer only works for inputs of size Ω(|H|) = Ω(|φ|).
Even if the input is large enough, P ′ might move agents out of input states before
liberating enough helpers. However, the computers of Section 6 can only do this if there
are enough helpers in the reservoir state (see point 3. in Section 6.3). Therefore, they
always generate enough helpers when the input is large enough.

7.4 A O(n3) bound on the expected interactions
We show that the computer obtained after the previous conversion runs within O(n3)
interactions. We sketch the main ideas; the details are in [11, Appendix G].

We introduce potential functions that assign to every configuration a positive potential,
with the property that executing any transition strictly decreases the potential. Intuitively,
every transition “makes progres”. We then prove two results: (1) under a mild condition,
a computer has a potential function iff it is bounded, and (2) every binary computer with
a potential function and no helpers, i.e. any bounded computer for which speed is defined,
stabilises within O(n3) interactions. This concludes the proof.

Fix a population computer P = (Q, δ, I, O, H).

▶ Definition 10. A function Φ : NQ → N is linear if there exist weights w : Q → N s.t.
Φ(C) =

∑
q∈Q w(q)C(q) for every C ∈ NQ. We write Φ(q) instead of w(q). A potential

function (for P) is a linear function Φ such that Φ(r) ≥ Φ(s) + |r| − 1 for all (r 7→ s) ∈ δ.

Observe that k-way transitions reduce the potential by k − 1, binary transitions by 1. At
this point, we consider only binary computers, but this distinction becomes relevant for the
refined speed analysis.

If a population computer has a potential function, then every run executes at most O(n)
transitions, and so the computer is bounded. Applying Farkas’ Lemma we can show that the
converse holds for computers in which every state can be populated – a mild condition, since
states that can never be populated can be deleted without changing the behaviour.

▶ Lemma 11. If P has a reachable configuration Cq with Cq(q) > 0 for each q ∈ Q, then P
is bounded iff there is a potential function for P.
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Consider now a binary computer with a potential function and no helpers. At every
non-terminal configuration, at least one (binary) transition is enabled. The probability that
two agents chosen uniformly at random enable this transition is Ω(1/n2), and so a transition
occurs within O(n2) interactions. Since the computer has a potential function, every run
executes at most O(n) transitions, and so the computer stabilises within O(n3) interactions.

The final step to produce a population protocol is to translate computers with marked-
consensus output function into computers with standard consensus output function, while
preserving the number of interactions. For space reasons this construction is presented in [11,
Appendix F].

8 Rapid Population Computers: Proving a O(n2) Bound

We refine our running-time analysis to show that the population protocols we have constructed
actually stabilise within O(n2) interactions. We continue to use potential functions, as
introduced in Section 7.4, but improve our analysis as follows:

We introduce rapidly-decreasing potential functions. Intuitively, their existence shows
that progress is not only possible, but also likely. We prove that they certify stabilisation
within O(n2) interactions.
We introduce rapid population computers, as computers with rapidly-decreasing potential
functions that also satisfy some technical conditions. We convert rapid computers into
protocols with O(|φ|) states, and show that the computers of Section 6 are rapid.

In order to define rapidly-decreasing potential functions, we need a notion of “probability
to execute a transition” that generalises to multiway transitions and is preserved by our
conversions. At a configuration C of a protocol, the probability of executing a binary
transition t = (p, q 7→ p′, q′) is C(q)C(p)/n(n − 1). Intuitively, leaving out the normalisation
factor 1/n(n − 1), the transition has “speed” C(q)C(p), proportional in the product of the
number of agents in p and q. But for a multiway transition like q, q, p 7→ r1, r2, r3 the
situation changes. If C(q) = 2, it does not matter how many agents are in p – the transition
is always going to take Ω(n2) interactions. We therefore define the speed of a transition as
min{C(q), C(p)}2 instead of C(q)C(p).

For the remainder of this section, let P = (Q, δ, I, O, H) denote a population computer.

▶ Definition 12. Given a configuration C ∈ NQ and some transition t = (r 7→ s) ∈ δ,
we let tmint(C) := min{C(q) : q ∈ supp(r)}. For a set of transitions T ⊆ δ, we define
speedT (C) :=

∑
t∈T tmint(C)2, and write speed(C) := speedδ(C) for convenience.

▶ Definition 13. Let Φ denote a potential function for P and let α ≥ 1. We say that Φ
is α-rapidly decreasing at a configuration C if speed(C) ≥ (Φ(C) − Φ(Cterm))2/α for all
terminal configurations Cterm with C → Cterm.

We have not been able to find potential functions for the computers of Section 6 that are
rapidly decreasing at every reachable configuration, only at reachable configurations with
sufficiently many helpers, defined below. Fortunately, that is enough for our purposes.

▶ Definition 14. C ∈ NQ is well-initialised if C is reachable and C(I) + |H| ≤ 2
3 n.

Observe that an initial configuration C can only be well-initialised if C(supp(H)) ∈
Ω(C(I)). We now define rapid population computers, and state the result of our improved
analysis.
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▶ Definition 15. P is α-rapid if
1. it has a potential function Φ which is α-rapidly decreasing in well-initialised configurations,
2. every state of P but one has at most 2 outgoing transitions,
3. all configurations in NI are terminal, and
4. for all transitions t = (r 7→ s), q ∈ I we have r(q) ≤ 1 and s(q) = 0.

▶ Theorem 3.
(a) The population computers constructed in Theorem 1 are O(|φ|3)-rapid.
(b) Every α-rapid population computer of size m deciding double(φ) can be converted into a

terminating population protocol with O(m) states that decides φ in O(α m4n2) interactions
for inputs of size Ω(m).

The detailed proofs can be found in the full version [11], in the following sections. The
proof of (a) is given in Appendix B. For (b), we prove separate theorems for each conversion
in Appendices C, D, E, and F. To achieve a tighter analysis of our conversions, we generalise
the notion of potential function; this is described in Appendix H.

9 Conclusions

We have shown that every predicate φ of quantifier-free Presburger arithmetic has a population
protocol with O(poly(|φ|)) states and O(|φ|7 · n2) expected number of interactions. If only
inputs of size Ω(|φ|) matter, we give a protocol with O(|φ|) states and the same speed.
The obvious point for further improvement is the |φ|7 factor in the expected number of
interactions.

Our construction is close to optimal. Indeed, for every construction there is an infinite
family of predicates for which it yields protocols with Ω(|φ|1/4) states [9]; further, it is known
that every protocol for the majority predicate requires in Ω(n2) interactions.
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