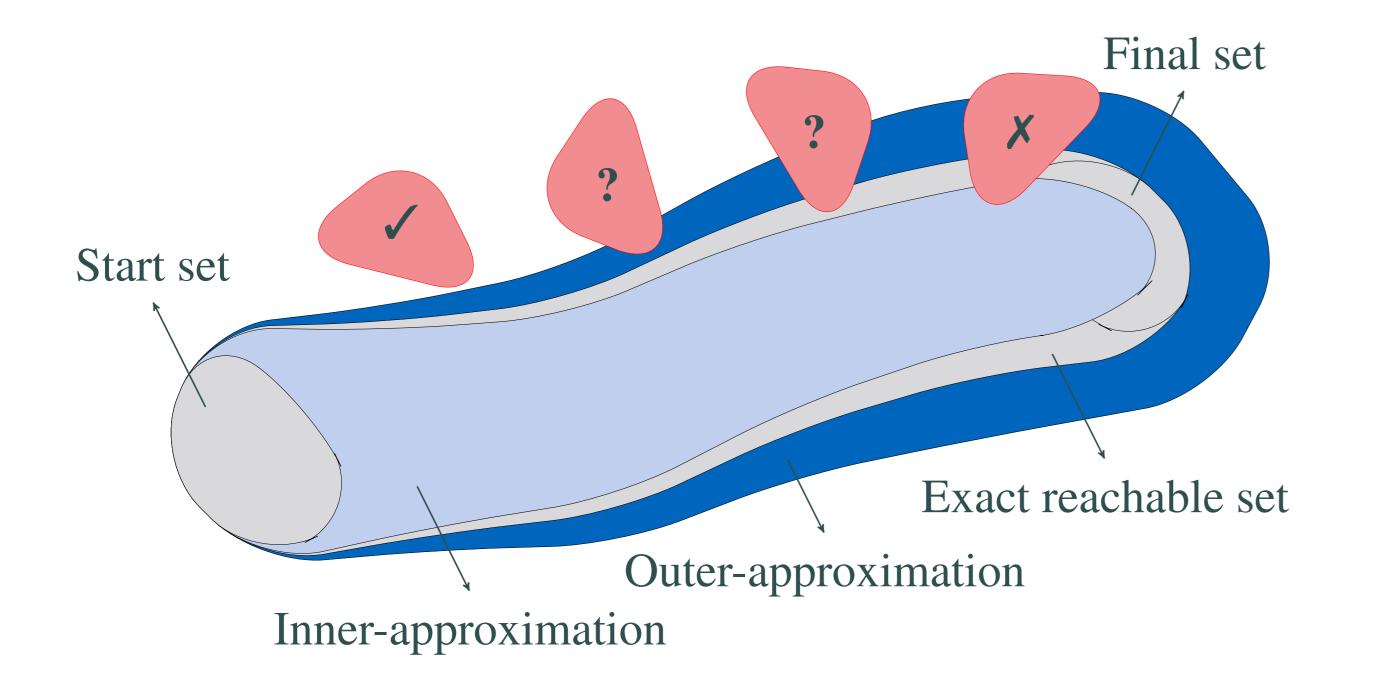
Automated Formal Verification of Dynamical Systems

Mark Wetzlinger

m.wetzlinger@tum.de

Supervisors: Matthias Althoff & Samarjit Chakraborty


Collaborators: Niklas Kochdumper (Stony Brook University) & Adrian Kulmburg (TUM) & Stanley Bak (Stony Brook University)

Motivation

How to provide **safety guarantees** for cyber-physical systems in the presence of uncertainties? The **reachable set** represents all possible future behaviors, but only inner-/outer-approximations are computable. Verification: For a given system, uncertainties, and time horizon, are any unwanted states reachable (red sets)?

B) Automated Reachability Analysis of Nonlinear Systems Tight reachable sets by local parameter optimization [2]: 1. Measure influence of parameters on reachable set size 2. Compare different time step sizes over fixed horizon

CONVEY

We cannot always prove or disprove safety with the computed inner-/outer-approximations.

Start set at time t Δt too small Δt too large Optimal Δt Sets at time t + h

 \rightarrow **Optimal time step size** via scalar cost function. Side result: Introduction of gain order, i.e., change in local approximation error due to change in time step size [3].

Evaluation

A) Comparison of [5] to state-of-the-art reachability tools on benchmarks from the **ARCH competition** (excerpt):

Benchmark				Our a	pproach	Time comparison			
Identifier	n	m	Safe?	Time	Refs.	CORA	HyDRA	JuliaReach	SpaceEx
HEAT01	125	0	\checkmark	0.17s	2	2.2s	13.2s	0.13s	4.2s
HEAT02	1000	0	\checkmark	2.2s	2	9.3s	160s	32s	
CBC01	201	0	\checkmark	0.11 s	2	7.1s		1.4s	313s
CBC02	1001	0	\checkmark	2.2s	2				
CBC03	2001	0	\checkmark	28 S	3				
CBF01	200	1	\checkmark	$0.27\mathrm{s}$	2	30s		12s	319s
CBF02	1000	1	\checkmark	3.7s	2				
CBF03	2000	1	\checkmark	$49_{ m S}$	3				
ISSC01-ISS	02 273	0	\checkmark	0.11 s	1	1.3s		1.4s	29s
ISSF01-ISS(01 270	3	\checkmark	$0.49\mathrm{s}$	2	59s		10s	49s

Background

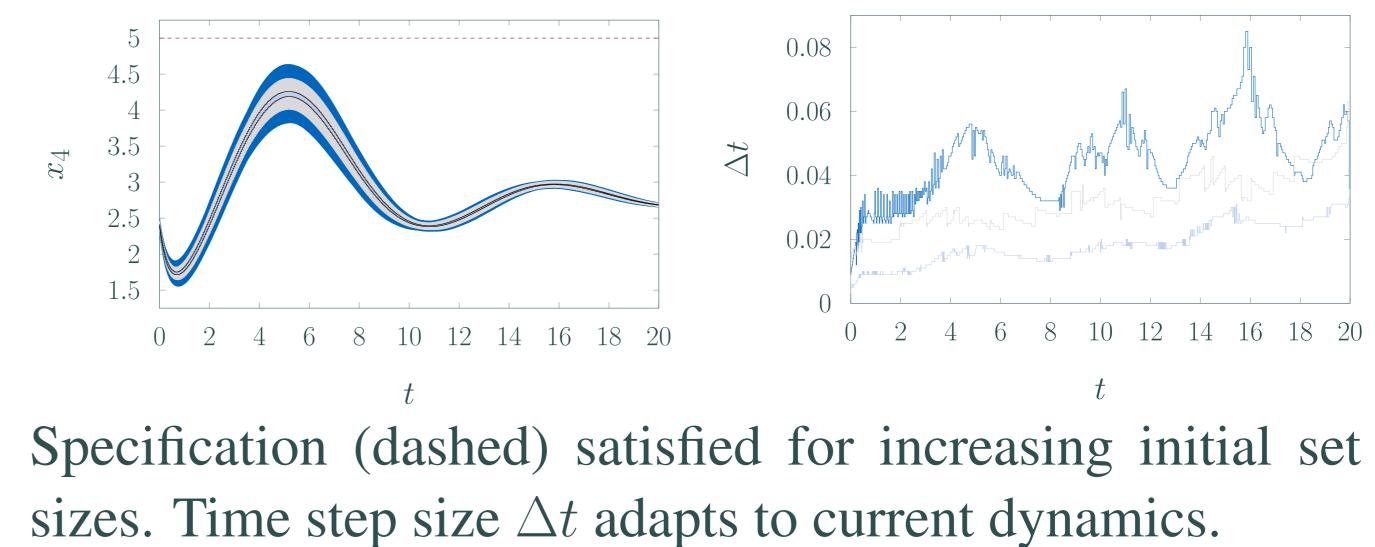
We consider linear time-invariant (LTI) systems

 $\dot{x}(t) = Ax(t) + Bu(t), \quad x \in \mathbb{R}^n, u \in \mathbb{R}^m$

and nonlinear systems

 $\dot{x}(t) = f(x(t), u(t)), \quad x \in \mathbb{R}^n, u \in \mathbb{R}^m,$

with an uncertain initial state $x(t_0) \in \mathcal{X}^0 \subset \mathbb{R}^n$ and uncertain inputs $\forall t : u(t) \in \mathcal{U} \subset \mathbb{R}^m$.


Approach

A) Automated Verification of Linear Systems Steps to automate reachability computation [1, 4]: 1. Error bounds for all sources of over-approximation: – enclosures of the homogeneous/particular solutions,

– operations under which zonotopes are not closed.

 \rightarrow all benchmarks solved correctly and fast.

B) Nonlinear system (n = 7) from ARCH competition:

2. Automatically tune algorithm parameters such that total error remains below a user-provided maximum error. Verification: **Iteratively refine** the maximum error [4]. **Convergence**: Safety can be verified or falsified for all **safety specifications** not requiring the *exact* reachable set. Alternative approach [5]: Skip explicit computation of errors, convergence via automated parameter tuning only.

References

- [1] M. Wetzlinger et al. "Adaptive parameter tuning for reachability analysis of linear systems". In: CDC. 2020.
- [2] M. Wetzlinger et al. "Adaptive Parameter Tuning for Reachability Analysis of Nonlinear Systems". In: *HSCC*. 2021.
- [3] M. Wetzlinger et al. "Adaptive reachability algorithms for nonlinear systems using abstraction error analysis". In: NAHS 46 (2022).
- [4] M. Wetzlinger et al. "Fully automated verification of linear systems using inner- and outerapproximations of reachable sets". In: *arXiv:2209.09321*. 2022.
- [5] M. Wetzlinger et al. "Fully automated verification of linear systems using reachability analysis with support functions". In: HSCC. 2023.

Online Verification & Synthesis CONVEY