Multi-modal Machine Learning for Hardening Firmware Binaries

Yunru Wang

yunru.wang@ifi.lmu.de

Supervisors: Johannes Kinder

Collaborators: Tristan Benoit

Software Supply Chain

CONVEY

CLIP: a SotA MMML Architecture [1]

The heavy reliance on **third-party libraries** in embedded firmware heightens software supply chain security risks. **BCSD** addresses known vulnerabilities, while **reverse engineering** reveals unknown ones.

CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the target dataset's classes.

Loss Functions

$$\begin{aligned} \mathcal{L}_{\text{Contrastive}} &= -\frac{1}{N} \left(\sum_{i=1}^{N} \log \frac{\exp(x_i^{\mathsf{T}} y_i / \sigma)}{\sum_{j=1}^{N} \exp(x_i^{\mathsf{T}} y_j / \sigma)} + \sum_{i=1}^{N} \log \frac{\exp(y_i^{\mathsf{T}} x_i / \sigma)}{\sum_{j=1}^{N} \exp(y_i^{\mathsf{T}} x_j / \sigma)} \right), \\ \mathcal{L}_{\text{Caption}} &= -\sum_{t=1}^{T} \log \mathcal{P}_{\theta}(y_t | y_{< t}, x), \\ \mathcal{L}_{\text{Sum}} &= \lambda_{\text{Contrastive}} \cdot \mathcal{L}_{\text{Contrastive}} + \lambda_{\text{Caption}} \cdot \mathcal{L}_{\text{Caption}}. \end{aligned}$$

Here, x_i and y_j denote binary and function name embeddings in the *i*-th and *j*-th pairs. N represents the batch size, and σ is the temperature to scale the logits.

- Align binary encoding with function names in latent space to generalize to zero-shot learning.
- Reconstruct **high-level structures** from binaries to assist in reverse engineering.
- Generalize to binaries across domains and different downstream tasks.

Optimization Levels

Binaries compiled with different configurations vary significantly. For instance, in O0 optimization, call arguments are pushed onto the stack, whereas they are optimized in O1.

Source code of default_bzalloc in bzip2.

text:0000000004066E2 text:0000000004066E5 text:0000000004066E9 text:00000000004066EC	<pre>mov eax, [rbp+var_C] imul eax, [rbp+var_10] movsxd rdi, eax ; size call _malloc</pre>	.text:000000000403ECC pop rcx .text:000000000403ECD retn .text:0000000000403ECD ; } // starts at 403EC0 .text:0000000000403ECD default bzalloc endp
text:0000000004066F1 text:0000000004066F5	mov [rbp+var_18], rax mov rax, [rbp+var_18]	
a. a disassembly segment of default_bzalloc (-00) b. a disassembly segment of default_bzalloc (-01) Disassembly segments of default_bzalloc in bzip2.		

Binary Distribution

In small-scale function name generation experiments, we observed significant differences in results based on the splitting strategy:
F1 score averaged 0.6646 when splitting by functions
F1 score averaged 0.4708 when splitting by binaries
We also noticed poor generalization between binaries when evaluating other state-of-the-art approaches.

Binary Representation Training Stage

BCSD Scenario

Evaluate binary similarity by computing the cosine distance between embeddings generated by the trained binary encoder.

References

[1] A. Radford et al. "Learning transferable visual models from natural language supervision". In: International Conference on Machine Learning. ICML. 2021, pp. 8748–8763.

CONVEY Robust Systems Design