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CONVEY

Motivation and Contribution
• Cyber-physical systems (CPS) become pervasive
• Many CPS are safety-critical, making it paramount to ensure their
safe operation

• The majority of CPS are influenced by noise and uncertainty
• Models of CPS are either unknown or too complex to be of any use

CPS Models
A discrete-time stochastic control system (dt-SCS) is a tuple S =

(X,U, Vm, w, f ) where:
•X ⊆ Rn and U ⊆ Rm are the sets of state and input, respectively.
•w is a sequence of independent and identically distributed (i.i.d.) ran-
dom variables on uncertainty space Vm.

•f : X × U × Vm → X is the state transition map such that:

x(t + 1) = f (x(t), u(t), w(t)), ∀t ∈ N.

Safety Problem

Consider a dt-SCS S, where the map f and the probability distribu-
tion of w are unknown. Consider a safety specification denoted by
Ψ = (X0, Xu). System S is called safe with respect to Ψ, denoted by
S |= Ψ, if all trajectories of S started from the initial set X0 ⊂ X

under a control policy C, never reach unsafe set Xu ⊂ X .

Safety Verification of dt-SCS

Definition 1: Control Barrier Certificate
Consider a dt-SCS S and a safety specification Ψ. Function B :X→
R+

0 is called a control barrier certificate (CBC) for S if there are
constants 0<γ<λ and a feedback controller C :X→U such that:

B(x) ≤ γ, ∀x ∈ X0, (a)
B(x) ≥ λ, ∀x ∈ Xu, (b)
E
[
B(f (x,C(x), w)) | x

]
≤ B(x), ∀x ∈ X\Xu. (c)

Theorem 1: Safety Probability
Let S be a given dt-SCS with a safety specification Ψ. Suppose there
is a CBC B and its associated controller C for the system S. Then,
one gets P {SC |= Ψ} ≥ 1 − γ

λ, where SC represents the dt-SCS S
controlled by C.

Data-driven Synthesis of CBC

Finding a CBC B and its corresponding controller C for a dt-SCS S
is not possible, since the map f and the probability distribution of w
are unknown.
(1) Considering CBC B and Controller C as two separate neural net-

works, Nb : Rn → R+
0 and Nc : Rn → Rm, respectively. Then, collec-

tion of sample pairs (xi, ui), i ∈ {1, . . . , N}, from the sets of state and
input, and also defining the loss function:

L =

4∑
ℓ=1

N∑
i=1

ReLU(gℓ(xi)),

g1(xi) = −Nb(xi)− η, ∀xi ∈ X

g2(xi) = Nb(xi)− γ − η, ∀xi ∈ X0

g3(xi) = −Nb(xi) + λ− η, ∀xi ∈ Xu

g4(xi) = E
[
Nb(f (xi,Nc(xi), w) | x)

]
− Nb(xi)− η, ∀xi ∈ X\Xu

(2) Replacing the expectation term in g4 with its empirical mean by
using i.i.d. samples wj, j ∈ {1, . . . , N̂}, for each pair of (xi, ui), i ∈
{1, . . . , N}. Hence:

ḡ4(xi) =
1

N̂

N̂∑
j=1

Nb(f (xi,Nc(xi), wj))− Nb(xi) + δ − η, ∀xi ∈ X\Xu

where η is a negative robustness parameter ensuring that conditions
in (a)-(c) are strongly satisfied, δ > 0 is defined for the empirical mean
approximation, and Nc(xi) is bounded within U .

Correctness Guarantee of Neural Networks

Theorem 2: Correctness Guarantee
Consider a dt-SCS S and a safety specification Ψ = (X0, Xu). As-
sume that all constraints g1, g2, g3, ḡ4 are Lipschitz continuous with
respect to pair (x, u), with a Lipschitz constant L. Suppose N̂ = M̂

δ2β

for some δ > 0 and 0 < β < 1, where M̂ is the upper bound for
Var(N∗

b(f (x,N∗
c(x), w))) ≤ M̂ for trained neural networks N∗

b and
N∗

c and for all x ∈ X . Collect N data pairs (xi, ui) with a quantiza-
tion parameter ϵ. If Lϵ + η ≤ 0, then P

{
SN∗

c
|= Ψ

}
≥ 1 − γ

λ with a
confidence of at least 1− β.

Case Study
Consider a dt-SCS of an inverted pendulum with additive zero-mean Gaussian

noise (standard deviation = 0.01). Assume X =
[
−π

4 ,
π
4

]2, X0 =
[
− π

15,
π
15

]2,
X\Xu =

[
−π

5 ,
π
5

]2, and U = [−10, 10]. The parameters are set to β = 0.001, γ = 1,
λ = 25, N̂ = 100, δ = 2, and ϵ = 0.00157. The neural network Nb comprises 100
neurons across each of the 5 hidden layers, while Nc consists of 25 neurons in each
of its 3 hidden layers, with learning rates of lrb = 10−4 and lrc = 10−3, respectively.
Then, we obtain P {SNc

|= Ψ} ≥ 0.96 with a confidence of at least 99.76%.

The constructed CBC over X (left) and the γ-level of CBC (right).
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