
Cooperative Verification

Sudeep Kanav
sudeep.kanav@lmu.de

Supervisors: Dirk Beyer

Collaborators: Tobias Kleinert & Cedric Richter
& Henrik Wachowitz (CONVEY)

CONVEY

Goal

1. Provide an overview of cooperative verification techniques published
in the scientific literature

2. Organize this knowledge by developing a classification for these
techniques

Definition

Verification Approach

Standalone Combination

Off-the-shelf Integrated

CooperativeNon-Cooperative

Portfolio Selection

A verification approach is called cooperative, if identifiable verifica-
tion actors pass information in form of identifiable verification arti-
facts towards the common objective of solving a verification problem,
where at least two of these actors are analyzers.
The restriction of at least two analyzers excludes tool combinations

where the input is merely preprocessed to make it amenable to being
verified by an analyzer. We exclude tools like syntactic transformers
and slicers based on syntactic criteria from the definition of analyzers.

Selection Process

Stage Activities No. of papers

Shortlist the publication outlets
to select the articles from

Collect the metadata about
articles in scope, i.e., articles
published in selected confer-
ences during the chosen dura-
tion

Search titles and abstracts for
selected keywords

Exclude articles after reading
the titles that are clearly not
about cooperative verification

Exclude more articles after
reading the abstracts

Review and classification

0

1

2

3

4

5

7 721

4 095

998

352

82

Classification of Selected Techniques

Class name Explanation Examples Count

Reduction The verification task is reduced such that it
can be solved by another analyzer.

[7, 8] 9

Guide The artifact produced by an analyzer acts to
guide another analyzer.

Conditional First analyzer tries to solve the verification
problem and produces an artifact that sum-
marizes the work done; another actor then
uses this information to focus only on the
unsolved parts of the task.

[2, 3] 13

Hint An analyzer generates hints that are then
used to guide the verification of another an-
alyzer.

[12, 10] 28

Scrutiny The artifact produced is scrutinized by an-
other analyzer.

Validation The result produced by one analyzer is vali-
dated by another analyzer.

[6, 4] 17

Refinement The artifact produced by one analyzer is re-
fined by another analyzer.

[9, 1] 4

Iterative
Validation
Guided
Refinement

The artifact produced is first validated, and
then the result of validation is used to guide
the process of refinement. This sequence is
repeated until a solution is found.

[5, 11] 11

Cooperative

Reduction Guide Scrutiny

Conditional Hint Validation Refinement

IterativeValidationGuidedRefinement

Insights

1. Our classification reflects the ideas commonly used in verification
2. Researchers are actively working on specific parts of the commonly

performed tasks during verification and combining them

References
[1] A. Albarghouthi et al. “From Under-Approximations to Over-Approximations and Back”. In:

Proc. TACAS. LNCS 7214. Springer, 2012, pp. 157–172.
[2] D. Beyer et al. “Conditional Model Checking: A Technique to Pass Information between Veri-

fiers”. In: Proc. FSE. ACM, 2012.
[3] D. Beyer et al. “Conditional Testing: Off-the-Shelf Combination of Test-Case Generators”. In:

Proc. ATVA. LNCS 11781. Springer, 2019, pp. 189–208.
[4] D. Beyer et al. “Correctness Witnesses: Exchanging Verification Results Between Verifiers”. In:

Proc. FSE. ACM, 2016, pp. 326–337.
[5] D. Beyer et al. “Decomposing Software Verification into Off-the-Shelf Components: An Appli-

cation to CEGAR”. In: Proc. ICSE. ACM, 2022, pp. 536–548.
[6] D. Beyer et al. “Witness Validation and Stepwise Testification across Software Verifiers”. In:

Proc. FSE. ACM, 2015, pp. 721–733.
[7] O. Inverso et al. “Bounded Model Checking of Multi-threaded C Programs via Lazy Sequential-

ization”. In: Proc. CAV. LNCS 8559. Springer, 2014, pp. 585–602.
[8] S. K. Lahiri et al. “Differential assertion checking”. In: Proc. FSE. ACM, 2013, pp. 345–355.
[9] K. Li et al. “Residual investigation: predictive and precise bug detection”. In: Proc. ISSTA. ACM,

2012, pp. 298–308.
[10] L. Ma et al. “GRT: Program-Analysis-Guided Random Testing (T)”. In: Proc. ASE. IEEE, 2015.
[11] D. Neider et al. “Invariant Synthesis for Incomplete Verification Engines”. In: Proc. TACAS.

Springer, 2018, pp. 232–250.
[12] V. Wüstholz et al. “Targeted greybox fuzzing with static lookahead analysis”. In: Proc. ICSE.

ACM, 2020.

CONVEY Evolving Systems

https://www.sosy-lab.org/people/kanav/

