

Verified Solution Methods for Markov Decision Processes

Maximilian Schäffeler

TU Munich, RTG ConVeY

Abstract

We formally verify executable algorithms for solving Markov decision processes (MDPs) in the interactive theorem prover Isabelle/HOL. Then, we verify executable dynamic programming algorithms and approximate algorithms using linear programming certification. Currently, we are building verified certificate checkers for quantitative model checking.

Expected Total Reward

Example Proof

• Expected total discounted reward ν_{π} is the cumulative reward collected during a run:

 $u_{\pi}(s) = \lim_{n \to \infty} \mathbb{E}_{\omega \sim T_{\pi}(s)} \left[\sum_{i < n} \lambda^{i} \cdot r(\omega_{i}) \right]$

The discount factor makes the agent short-sighted

```
lemma contraction_L: "dist (L p v) (L p u) \leq l * dist v u"
proof -
  have aux: "L p v s - L p u s \leq l * dist v u"
    if lea: "(L p v s) \geq (L p u s)" for v s u
  proof -
    have "L p v s - L p u s = l *_R (\mathcal{P}_1 p v - \mathcal{P}_1 p u) s"
       by (simp add: L def algebra simps)
    also have "... \leq l * |\mathcal{P}_1 p (v - u) s|"
      by (auto simp: blinfun.diff right)
    also have "... \leq l * norm (\mathcal{P}_1 p (v - u))"
      using abs le norm bfun by fastforce
    also have "... \leq l * dist v u"
      by (auto simp: \mathcal{P}_1.rep eq dist norm)
    finally show ?thesis
       by auto
  qed
  have "dist (L p v s) (L p u s) \leq l * dist v u" for s
    using aux aux[of v _ u] by (cases "L p v s \ge L p u s")
         (auto simp: dist real def dist commute)
  thus "dist (L p v) (L \overline{p} u) \leq l * dist v u"
    by (simp add: dist bound)
```

Motivation

- Markov decision processes (MDPs) model systems where an agent maximizes rewards under uncertainty
- Application areas are often safety-critical and real-world scenarios: planning, reinforcement learning, model checking, operations research

⇒ Correct and robust software is important
 ⇒ We use interactive theorem provers to develop
 trustworthy software for MDPs

Isabelle/HOL

- We use **Isabelle/HOL** for our developments
- Isabelle/HOL is an interactive theorem prover
- Math library + AFP: probability theory, limits, etc.
- Powerful automation: sledgehammer and auto
- Code extraction \Rightarrow verified executables

Dynamic Programming

The Bellman optimality operator

 $\mathcal{L}(v) = \sup_{\pi} r_{\pi} + \lambda \mathcal{P}_{\pi} v$

converges to the **optimal value** ν^* :

 $\lim_{i \to \infty} \mathcal{L}^i(v) = \nu^*.$

- We formalize
 - (Gauss-Seidel) Value iteration
- (Modified) Policy Iteration
- Refine algorithms to efficiently executable code
- Faster:
 - begin with value iteration on floats,
 - then one iteration with precise arithmetic

qed

Conclusion

- ITPs are suitable for developing executable algorithms for reasoning under uncertainty
- Powerful proof automation + a large library of formal proofs were essential
- Certification is key for large state spaces
- Future work: Floating-point guarantees, Monte-Carlo algorithms

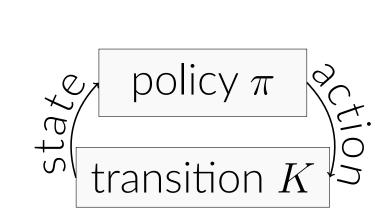
Quantitative Model Checking

• **Highly trustworthy**: high-level proofs \Rightarrow axioms

Markov Decision Processes

An MDP consists of

- sets of states S and actions A_s for each state
- transition probabilities $K: S \times A \rightarrow P(S)$
- rewards $r: S \times A \to \mathbb{R}$
- discount factor $\lambda \leq 1$

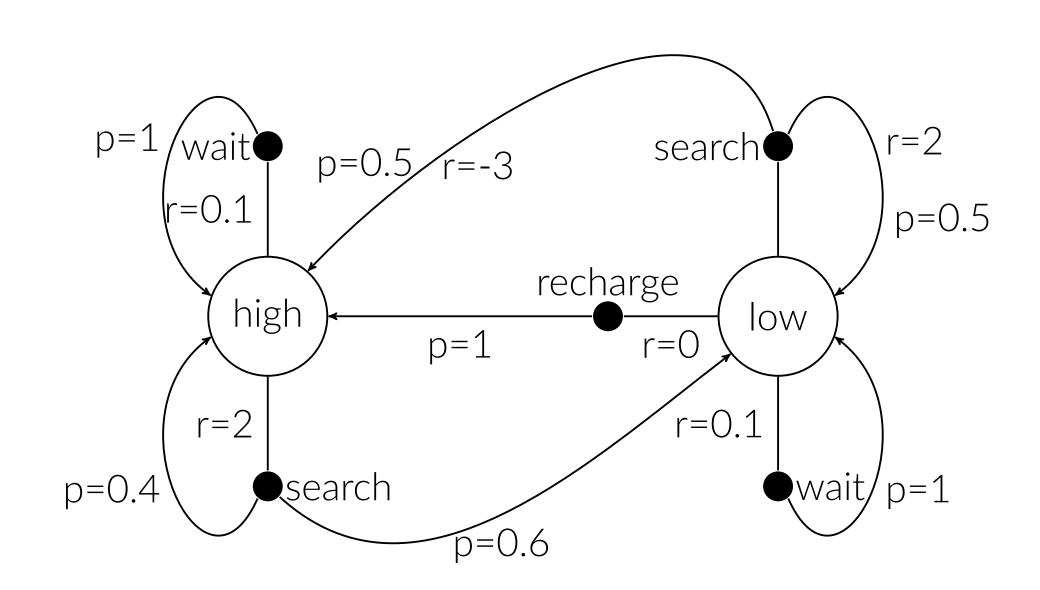


Value Iteration in Isabelle/HOL

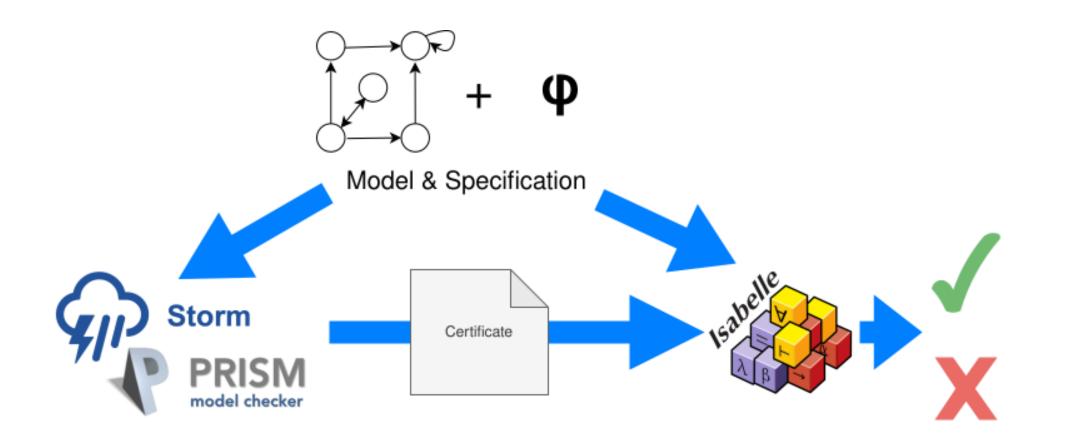
else value_iteration eps $(\mathcal{L}_b \ v))$ "

Benchmarks

Goal: maximize reward by optimizing a policy
A policy selects an action based on the states and actions observed



- Benchmark problems:
 International Planning Competition 2018
- Precise arithmetic is expensive, certification is much more competitive



Linear Programming Certification

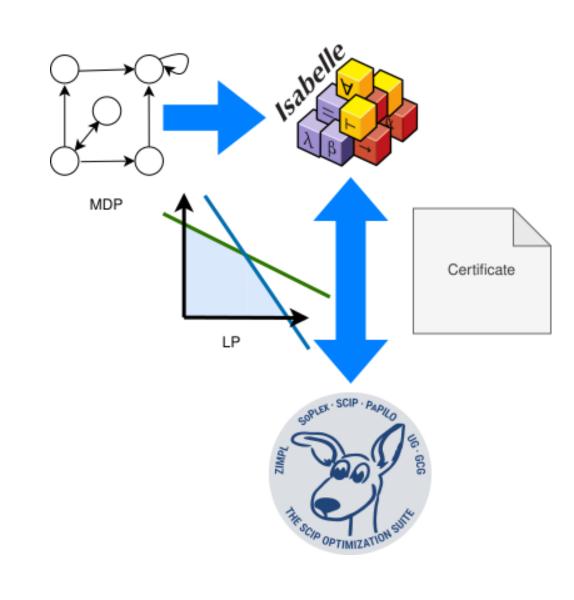


Figure 1. The robot can choose between searching for treasure, waiting, or recharging. States indicate battery levels.

Domain	D S U	P	\mathbb{R}	\mathbb{F}	L L	\mathbb{R}	\mathbb{F}			
traffic	4	4	4	4	4	2	4	4	4	
elevators	8	5	2	6	5	1	6	6	6	
game-of-life	3	3	_	3	3	_	3	3	_	
manufacturer	2	2	—	2	2	_	2	2	2	
luck	5	5	5	5	5	5	5	5	5	
skill-teaching	8	6	4	7	6	3	7	6	6	
tireworld	6	4	4	4	4	4	4	4	4	
wildlife	8	6	5	8	6	4	8	8	8	
			1		ļ.	1		1		1

Table 1. Table with number of instances solved by different algorithms. Columns 2,3 show the performance of PRISM vs. our implementations: \mathbb{R} , \mathbb{F} indicate precise or floating-point arithmetic. Column 4 displays the performance of our certification approach.

References

- [1] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha
 Venkataraman. Efficient solution algorithms for factored mdps. J. Artif.
 Intell. Res., 19:399–468, 2003.
- [2] Maximilian Schäffeler and Mohammad Abdulaziz. Formally verified solution methods for markov decision processes. In AAAI 2023.
- [3] Maximilian Schäffeler and Mohammad Abdulaziz. Verified algorithms for solving markov decision processes. *Archive of Formal Proofs*, December 2021.
 - https://isa-afp.org/entries/MDP-Algorithms.html, Formal
 proof development.

Funding This work was supported by the Research Training Group GRK 2428 CONVEY of the German Research Council (DFG)

https://github.com/schaeffm/mdps-isabelle-hol Formally Verified Solution Methods for Markov Decision Processes maximilian.schaeffeler@tum.de