Verification of Top-Down Solvers

Sarah Tilscher

sarah.tilscher@tum.de

Supervisors: Helmut Seidl & Tobias Nipkow

Collaborators: Yannick Stade & Michael Schwarz (CONVEY) & Ralf Vogler & Helmut Seidl

Setting

Compute a solution for a constraint system

 $x_i \supseteq f_i(x_1, ..., x_n)$ where x_i are unknowns (points of interest) and

Objective

Prove the correctness of the solver's solution σ , i.e. $\sigma x_i \supseteq f_i (\sigma x_1, ..., \sigma x_n)$ for all $x_i \in reach$ where *reach* is the set of unknowns evaluated during the

CONVEY

 f_i are the constraints to be satisfied

Used for example for static program analysis:

Motivation

Advanced solving strategies complicate reasoning about solver correctness. Implementations are often fragile and vulnerable to bugs.

→ Formal verification to justify the correctness

Approach

- Apply abstract² interpretation [2]
- 1. Start with a trivially correct solver:

solve eq x =
 rec query y = eq y query
 query x

2. Add state as abstraction of the left-context of the solver's trace

The trace describes nested function calls with values of parameters and return values for a call to solve.

Top-Down Solver

- Generic fixpoint algorithm
- Computes partial solution for the queried unknown of interest and all unknowns it depends on
- Tracks dependencies between unknowns on-the-fly
- An improved version [3] is used by the static analyzer GOBLINT (**Goblint/analyzer**)

let	solve eq x =	let r	rec destabilize y =
	<pre>let rec iterate y =</pre>	1	<pre>let work = infl(y) in</pre>
	let query z =	i	infl := infl[$y \mapsto \emptyset$];
	if $z \notin called$	d: f	forall $z \in work$:
	called :=	= called $\cup \{z\}$	stable := stable - $\{z\}$
	iterate z	Z	destabilize z
	called :=	= called - $\{z\}$	
	infl := infl[$z \mapsto infl(z) \cup \{y\}$	
	σ (z) in		

```
if y \notin stable:
    stable := stable U {y}
    let d = eq y query in
    if d \neq \sigma(y):
    \sigma := \sigma[y \mapsto d]
```

- 3. Build proofs with inductions over the trace
- 4. Introduce optimizations based on the state

Optimizations

- Reduce computation (skip unnecessary re-evaluations)
 - track stable unknowns that are unaffected since their last call to solve
 - track the values of unknowns with which the right-hand side was last evaluated (no re-evaluation when the values of influencing unknowns did not change)
- Reduce space
- Introduce widening and narrowing
- Introduce side-effects [1]

Future Work

• Design precision improvements based on self-

destabilize y iterate y **in**

called := called U {x} iterate x σ

observation

- Verify the TD-solver with side-effects
- Generic framework for verifying fixpoint algorithms

References

[1] K. Apinis et al. "Side-Effecting Constraint Systems: A Swiss Army Knife for Program Analysis". In: *APLAS 2012*. Vol. 7705. LNCS. Springer, 2012, pp. 157–172.
[2] P. Cousot et al. "A²I: Abstract² Interpretation". In: *Proc. ACM Program. Lang.* 3.POPL (2019), 42:1–42:31.
[2] H. Saidh et al. "Three Immergence at the Ten Derm Solver". In: *Mathematical Structure Constraint Systems* (2022), 1–45.

[3] H. Seidl et al. "Three Improvements to the Top-Down Solver". In: *Mathematical Structures in Computer Science* (2022), 1–45.

CONVEY Evolving Systems