
Verification of Top-Down Solvers

Sarah Tilscher
sarah.tilscher@tum.de

Supervisors: Helmut Seidl & Tobias Nipkow

Collaborators: Yannick Stade & Michael Schwarz (CONVEY) & Ralf Vogler & Helmut Seidl

CONVEY

Setting

Compute a solution for a constraint system
xi ⊒ fi(x1, ..., xn)

where xi are unknowns (points of interest) and
fi are the constraints to be satisfied

Used for example for static program analysis:

int factorial(int n)
{
int r = 1;
int i = n;
while(i > 0) {
r = r * i;
i = i - 1;

}
return r;

}

i = n;

i ≤ 0; i > 0;

r = r * i;

i = i - 1;

return r;
4

5

1

0

2

3

r = 1;

A[1] ⊒ Jr = 1; i = n; K♯A[0]

⊔ Ji = i− 1; K♯A[3]

A[2] ⊒ Ji > 0; K♯A[1]

A[3] ⊒ Jr = r ∗ i; K♯A[2]

. . .

Motivation
Advanced solving strategies complicate reasoning about
solver correctness. Implementations are often fragile and
vulnerable to bugs.

$ Formal verification to justify the correctness

Top-Down Solver

• Generic fixpoint algorithm
• Computes partial solution for the queried unknown of

interest and all unknowns it depends on
• Tracks dependencies between unknowns on-the-fly
• An improved version [3] is used by the static analyzer

GOBLINT (§ goblint/analyzer)
let solve eq x =

let rec iterate y =
let query z =

if z /∈ called:
called := called ∪ {z}
iterate z
called := called - {z}

infl := infl[z 7→ infl(z) ∪ {y}]
σ(z) in

if y /∈ stable:
stable := stable ∪ {y}
let d = eq y query in
if d ̸= σ(y):

σ := σ[y 7→ d]
destabilize y
iterate y in

called := called ∪ {x}
iterate x
σ

let rec destabilize y =
let work = infl(y) in
infl := infl[y 7→ ∅];
forall z ∈ work:

stable := stable - {z};
destabilize z

Objective

Prove the correctness of the solver’s solution σ, i.e.
σ xi ⊒ fi (σ x1, ..., σ xn) for all xi ∈ reach

where reach is the set of unknowns evaluated during the
final iteration

Approach

Apply abstract² interpretation [2]

1. Start with a trivially correct solver:
solve eq x =

rec query y = eq y query
query x

2. Add state as abstraction of the left-context of the
solver’s trace

Iterate x1 d4

. . .

Iterate x2 d2 Iterate x3 d3

Query x1 x2 d2 Query x1 x3 d3

Query x2 x1 d1 Query x2 x1 d1

Iterate x2 d2 Iterate x3 d3

left-context
trace

location

The trace describes nested function calls with values of
parameters and return values for a call to solve.

3. Build proofs with inductions over the trace
4. Introduce optimizations based on the state

Optimizations

• Reduce computation (skip unnecessary re-evaluations)
– track stable unknowns that are unaffected since their last call to solve
– track the values of unknowns with which the right-hand side was last evaluated

(no re-evaluation when the values of influencing unknowns did not change)

• Reduce space
• Introduce widening and narrowing
• Introduce side-effects [1]

Future Work
• Design precision improvements based on self-

observation
• Verify the TD-solver with side-effects
• Generic framework for verifying fixpoint algorithms

References
[1] K. Apinis et al. “Side-Effecting Constraint Systems: A Swiss Army Knife for Program Analysis”. In: APLAS 2012. Vol. 7705. LNCS. Springer, 2012, pp. 157–172.
[2] P. Cousot et al. “A2I: Abstract2 Interpretation”. In: Proc. ACM Program. Lang. 3.POPL (2019), 42:1–42:31.
[3] H. Seidl et al. “Three Improvements to the Top-Down Solver”. In: Mathematical Structures in Computer Science (2022), 1–45.

CONVEY Evolving Systems


