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f Relation to ConVeY \

With the rise of Neural Networks, they are also

o . Neural Networks are continuous functions and they are often part
applied in safety-critical systems (e.g. autonomous _ .
o , of Cyber-Physical-Systems. These systems need to be verified or
cars). It is important to prove their safety, however . L
, o , T certified. Thus, we also need the verification of the Neural
this definition may be. Since the verification is L . , , ,
Networks. Additionally, there is a wide are of life-long learning and
currently not even scalable to small NNs, we focus on , o
adaptation of Neural Networks, so it might be necessary to have a

Qntinuous verification of them. /

auarantees Theorem for Relation between Original and Abstraction

abstraction, i.e. a method to reduce the size of the

verification problem.

The difference between the original N (x)and the abstraction N*(x)can be bounded by

[NH(x) = N*(x)[| < b(1 —a""1)/(1 —a)

_ o a = A(|[W][ +n) assuming that for all layers | € {1, ..., L} and for all
/—\ b (l:) AW e immputs x € X, we have
A\ the Lipschitz-constant of the activation function in (
. A\ = max; ){({) J / o foriec Il . ]zgl)(x) — ZjEB([) aggzj(-l)(x)\ < eld)
Goal Problem Solution () |
|IW || = max; [|[W'\V]|; oS W(l) S (l)‘ < ()
e e . : () iel) Wi 2apep) K¢l =T
Verification of NNs Scalability Abstraction 1) = maxy 1

€ = maxy e(!)
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the neurons combinations of other neurons \Error of the neurons on the test-set of an MNIST network with 3x100 neurons, reduced by 30%. /
: : : : : How to find the basis neurons? How to find the coefficients? \
Semantic Information \ Linear Combination W 15 NEL WO 't
. Greedy method: Iterate through all . Linear Program: Include slack variables
coefficient
M / 1 6 neurons in the network and try to because there is no perfect solution.
0 + 2X 2| = > replace them. Find the one with the . Orthogonal Projection: Project
smallesr replacement error neurons that should be replaced in the
A\ J/
basis neUrons. . Heuristic method: Sort all neurons with space of the basis neurons.
descending variance on the training

k inputs. Choose the first neurons. /
Tool

Based on an IO-set X calculate the activation Linear ;g}r - DeepAbstract [1]: Clustering of neurons : =
values of the neurons We use the inputs x e X Neural | = beeedl @ e G e et e e B 3 60 ‘
and feed them to the network. We then capture Network El':r?} (many by one) g 40
the activation values (=outputs) of the neurons. @ostraction HerlEem 2 Replheing navrens 20
based on the syntactic information, i.e. K 200 A onrae 100
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This is a comparison of the behavior of LINNA and the bisimulation on a .
Neural Network, for a fixed number of layers and increasing number of Compa riIson 100 ~=

/
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