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Problem Setup: Node Classification
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Graph Convolution Network ¢ (S (7( o (S o(SXW) Wo) - ) Wd)
S = or Srow = D~ 1lA, o(.) = Linear or RelLU, W, € R"%h are weights to learn.

Intriguing Empirical Observations
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Analysis using Graph Neural Tangent Kernel and Degree Cor-
rected Stochastic Block Model (DC-SBM)

Graph Neural Tangent Kernel as 7 — oo
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where ¥, = SXXTST, %, = 85,187, E = influence of o(.).

DC-SBM: Random graph model characterized by p,q € |0, 1] and degree correc-
tion vector 7 = (7y,...,m,) € |0,1]". Then for K latent classes, C; € {1,..., K},
the population adjacency matrix M = E|A] is,
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Visualizations of our Theoretical Results

1. Class structure is preserved in .S, 2. Performance | as d
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3. SKkip-connections retain info even at d = oo
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CONVEY

Fast Adaptive Test-Time Defense with Robust Features  under review

Problem Statement: Improve Adaptive Test-time Defense

Given a trained neural network, how can we make it robust to adversarial
attacks at fest-time? Can we efficiently improve the robustness at test-time?

Idea: Project the learned features to the robust subspace

Stage 1: Post-training computation of robust features
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Compute Covariance
Strain = 2 @@ T = Udiag(A\)UT

Stage 2: Robust Feature Inference

A

Projection onto robust
feature subspace. B Compute classwise robustness score

I for u;,Ve € Y as s.(u) := \(8,] u;)?

o(z) B = ll'i U'p |
Select top-K robust features Ve € Y
U, :={u;|s.t. sc(u;) is in top-K}.

Test Input x;

A\

U := Union{U. |Vc € Y}
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CIFAR-10 Clean loo(€ = 57) lo(e = 0.5)
Training Method +RFI Method +RFI Method +RFI
PGD 83.53 83.22 4220 43.29 5461 355.03
IAT 91.86 91.26 4476 46.95 62.53 64.31

C&W attack 85.11 84.97 40.01 42.56 55.02 356.79

Representation Learning with Tensorized Autoencoder aistars 2023

Problem Statement: Improve representation of multi-modal data

Standard AE learns one representation of the data. How to improve?
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g;() and are the encoder and for cluster 7, C; is the center of class 7, .5 ;

assigns a datapoint ¢ to an AE 3.

Theory: Optimum for Linear TAE

Zn: S;jiXi
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Z Sj '
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Empirical Performance

TAE outperforms other methods in denoising and competitively in clustering
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