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CONVEY

Analyzing Graph Neural Network Architectures through Neural
Tangent Kernel ECML PKDD 2022, arxiv:2210.09809 (under review)

Problem Setup: Node Classification

• Graph G with n nodes

• Adjacency matrix A ∈ {0, 1}n×n

• Degree matrix D ∈ Nn×n

• Feature matrix X ∈ Rn×f

•m nodes label Y ∈ {1, . . . , K}m

Predict labels for the unlabeled nodes

Graph Convolution Network ϕ
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2 or Srow = D−1A, σ(.) = Linear or ReLU, Wi ∈ Rh×h are weights to learn.

Intriguing Empirical Observations

1. Srow performs better than Ssym for any depth d

2. Performance ↓ as d ↑, skip-connections fix it

3. σ(.) = Linear performs as good as σ(.) = ReLU

Analysis using Graph Neural Tangent Kernel and Degree Cor-
rected Stochastic Block Model (DC-SBM)

Graph Neural Tangent Kernel as h→ ∞
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where Σ1 = SXXTST , Σi = SΣi−1S

T , Ė = influence of σ(.).

DC-SBM: Random graph model characterized by p, q ∈ [0, 1] and degree correc-
tion vector π = (π1, . . . , πn) ∈ [0, 1]n. Then for K latent classes, Ci ∈ {1, . . . , K},
the population adjacency matrix M = E[A] is,

Mij =

{
pπiπj if Ci = Cj
qπiπj if Ci ̸= Cj

Visualizations of our Theoretical Results

1. Class structure is preserved in Srow 2. Performance ↓ as d ↑

3. Skip-connections retain info even at d = ∞ 4. Linear as good as ReLU

Fast Adaptive Test-Time Defense with Robust Features Under review

Problem Statement: Improve Adaptive Test-time Defense
Given a trained neural network, how can we make it robust to adversarial

attacks at test-time? Can we efficiently improve the robustness at test-time?

Idea: Project the learned features to the robust subspace

Representation Learning with Tensorized Autoencoder AISTATS 2023

Problem Statement: Improve representation of multi-modal data

Standard AE learns one representation of the data. How to improve?

min
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gj() and fj() are the encoder and decoder for cluster j, Cj is the center of class j, Sj,i
assigns a datapoint i to an AE j.

Theory: Optimum for Linear TAE

Class Assignment Sj,i = 0 or 1, centers Cj =

n∑
i=1

Sj,iXi

n∑
i=1

Sj,i
and encoding corresponds to

the top h eigenvectors of
n∑
i=1

Sj,i (Xi − Cj) (Xi − Cj)
T .

Empirical Performance

TAE outperforms other methods in denoising and competitively in clustering
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