Theoretical Analysis and Formal Guarantees of Machine Learning Algorithms

Mahalakshmi Sabanayagam

sabanaya@cit.tum.de

Supervisors: Debarghya Ghoshdastidar & Matthias Althoff

Collaborators: Julia Kempe (NYU), Kirkamol Muandet (CISPA) Leena C Vankadara (Amazon), Anna Dawid (Flatiron) & others

CONVEY

Analyzing Graph Neural Network Architectures through Neural Tangent Kernel ECML PKDD 2022, arxiv:2210.09809 (under review)

Problem Setup: Node Classification

• Graph G with n nodes

• Adjacency matrix $A \in \{0, 1\}^{n \times n}$

Fast Adaptive Test-Time Defense with Robust Features Under review

Problem Statement: Improve Adaptive Test-time Defense

Given a trained neural network, how can we make it robust to adversarial attacks at *test-time*? Can we *efficiently* improve the robustness at test-time?

Idea: Project the learned features to the robust subspace

Predict labels for the unlabeled nodes

Graph Convolution Network $\phi \left(S \sigma \left(\cdots (S \sigma(SXW_1) W_2) \cdots \right) W_d \right)$ $S = S_{sym} = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ or $S_{row} = D^{-1}A$, $\sigma(.) = \text{Linear or ReLU}$, $W_i \in \mathbb{R}^{h \times h}$ are weights to learn.

Intriguing Empirical Observations

1. S_{row} performs better than S_{sym} for any depth d 2. Performance \downarrow as $d \uparrow$, skip-connections fix it 3. $\sigma(.)$ = Linear performs as good as $\sigma(.)$ = ReLU

Analysis using Graph Neural Tangent Kernel and Degree Corrected Stochastic Block Model (DC-SBM)

Graph Neural Tangent Kernel as $h \to \infty$

$$\Theta = \sum_{i=1}^{d+1} \Sigma_i \odot \left(SS^T \right)^{\odot(d+1-i)} \odot \left(\bigoplus_{j=i}^d \dot{E}_j \right)$$

CIFAR-10 Training	Clean		$\ell_{\infty}(\epsilon = \frac{8}{255})$		$\ell_2(\epsilon = 0.5)$	
	Method	+RFI	Method	+RFI	Method	+RFI
PGD	83.53	83.22	42.20	43.29	54.61	55.03
IAT	91.86	91.26	44.76	46.95	62.53	64.31
C&W attack	85.11	84.97	40.01	42.56	55.02	56.79

Representation Learning with Tensorized Autoencoder AISTATS 2023

Problem Statement: Improve representation of multi-modal data

Standard AE learns one representation of the data. How to improve?

where $\Sigma_1 = SXX^TS^T$, $\Sigma_i = S\Sigma_{i-1}S^T$, \dot{E} = influence of $\sigma(.)$.

DC-SBM: Random graph model characterized by $p, q \in [0, 1]$ and degree correction vector $\pi = (\pi_1, \ldots, \pi_n) \in [0, 1]^n$. Then for K latent classes, $C_i \in \{1, \ldots, K\}$, the population adjacency matrix $M = \mathbb{E}[A]$ is,

$$M_{ij} = \begin{cases} p\pi_i\pi_j & \text{if } \mathcal{C}_i = \mathcal{C}_j \\ q\pi_i\pi_j & \text{if } \mathcal{C}_i \neq \mathcal{C}_j \end{cases}$$

Visualizations of our Theoretical Results

1. Class structure is preserved in S_{row}

2. Performance \downarrow **as** $d \uparrow$

$$\min_{\{\phi_j,\psi_j\}_{j=1}^k, S} \sum_{i=1}^n \sum_{j=1}^k S_{j,i} \left[\left\| (X_i - C_j) - f_{\phi_j} \left(g_{\psi_j} \left(X_i - C_j \right) \right) \right\|^2 - \lambda \|g_{\psi_j} \left(X_i - C_j \right) \|^2 \right]$$

 $g_i()$ and $f_i()$ are the encoder and decoder for cluster j, C_i is the center of class j, $S_{j,i}$ assigns a datapoint i to an AE j.

Theory: Optimum for Linear TAE Class Assignment $S_{j,i} = 0$ or 1, centers $C_j = \frac{\sum_{i=1}^n S_{j,i}X_i}{\sum_{i=1}^n S_{j,i}}$ and encoding corresponds to the top h eigenvectors of $\sum_{i=1}^{n} S_{j,i} (X_i - C_j) (X_i - C_j)^T$.

Empirical Performance

TAE outperforms other methods in denoising and competitively in clustering

Publications

1. Esser, P., Mukherjee, S., Sabanayagam, M. and Ghoshdastidar, D. Improved Representation Learning Through Tensorized Autoencoders. AISTATS 2023 2. Sabanayagam, M., Esser, P. and Ghoshdastidar, D. Analyzing Graph Neural Network Architectures through the Neural Tangent Kernel. ECML PKDD 2022 3. Sabanayagam, M., Vankadara, L.C. and Ghoshdastidar, D. Graphon based Clustering and Testing of Networks: Algorithms and Theory. ICLR 2022

4. Singh, A., Sabanayagam, M., Muandet, K. and Ghoshdastidar, D. Fast Adaptive Test-Time Defense with Robust Features. Under Review at NeurIPS 2023 5. Sabanayagam, M., Behrens, F., Adomaityte, U. and Dawid, A. Unveiling the Hessian's Connection to the Decision Boundary. Under review at NeurIPS 2023 6. Sabanayagam, M., Esser, P. and Ghoshdastidar, D. Representation Power of Graph Convolutions : Neural Tangent Kernel Analysis. Under Review at TMLR 2023

Robust Systems Design CONVEY