Provably Safe Reinforcement Learning for Motion Planning

Hanna Krasowski

hanna.krasowski@tum.de

Supervisors: Matthias Althoff & Majid Zamani

Collaborators: Prithvi Akella (Caltech) & Aaron Ames (Caltech) & Niklas Kochdumper (Stony Brook) & Jakob Thumm (TUM) & Xiao Wang (TUM)

Research Questions

How can we extend reinforcement learning to achieve that safety specifications are always fulfilled? How can we integrate complex safety specifications of

Action Masking for Autonomous Driving

cyber-physical systems in reinforcement learning?

Provably Safe Reinforcement Learning

Def. Provably safe RL provides guarantees for the safety specifications during learning and deployment. The specifications are task-specific, and there are various ways to define them [1].

Three approaches of provably safe RL:

with the next state s_{t+1} , reward r_t , action a_t , safe action a_t^{φ} , action set \mathcal{A} , safe action set \mathcal{A}_s , provably safe action set \mathcal{A}_{φ} , and correction action \tilde{a} .

- Commonroad-RL is an open-source reinforcement learning environment for autonomous driving [3].
- For highway driving, goal reaching decreases by 10 % to 87.5% on highD dataset compared to unsafe baseline [4].
- For urban driving, adding more traffic rules is necessary to increase goal reaching (about 30 % on inD dataset) [5].

Safe Motion Planning for Autonomous Vessels

OpenSeaMap map of the scenario

Corresponding CommonOcean scenario

• CommonOcean is a benchmarking suite for motion planning on the water [6].

Action Projection with Reachability Analysis

We can formulate the projection to the closest safe control input as an optimization problem [2]:

c h_i

• Formalization of traffic rules in temporal logic [7], e.g., $G\left(\operatorname{keep}(x_{ego}, x_{o}, *) \implies \left(\operatorname{no_turning}(x_{ego}, *) \cup \neg \operatorname{keep}(x_{ego}, x_{o}, *)\right)\right).$

Probabilistic Guarantees via Temporal Logic

Modularity and transferability is achieved by separating safety specifications and performance objectives [8].

References

- [1] H. Krasowski et al. *Provably Safe Reinforcement Learning: A Theoretical and Experimental Comparison*. 2023. arXiv: 2205.06750.
- [2] N. Kochdumper et al. "Provably Safe Reinforcement Learning via Action Projection using Reachability Analysis and Polynomial Zonotopes". In: *Open Journal of Control Systems* (2023). .
 [3] X. Wang et al. "CommonRoad-RL: A Configurable Reinforcement Learning Environment for Motion Planning of Autonomous Vehicles". In: *ITSC*. 2021. .

$$\min_{\alpha \in [-1,1]} \|\alpha - \alpha_a\|_2^2 \text{ subject to } \alpha \in \bigcap_{i=1} \bigcup_{l=1}^{\infty} \langle d_{il}, b_{il}, E_{il} \rangle_{LS}$$

where

- $\alpha_a \in \mathbb{R}^p$ is a parametrization of the input $u_a = c_u + G_u \alpha_a$ and proposed by the reinforcement learning agent,
- $\langle d_{il}, b_{il}, E_{il} \rangle_{LS}$ is the polynomial level set describing the collisions *i* for the halfspace constraint *l* of the unsafe set.
- [4] H. Krasowski et al. "Safe Reinforcement Learning for Autonomous Lane Changing Using Set-Based Prediction". In: *ITSC*. 2020.
- [5] H. Krasowski et al. "Safe Reinforcement Learning for Urban Driving using Invariably Safe Braking Sets". In: *ITSC*. 2022.
- [6] H. Krasowski et al. "CommonOcean: Composable Benchmarks for Motion Planning on Oceans".
 In: *ITSC*. 2022. 2022.
- [7] H. Krasowski et al. "Temporal Logic Formalization of Marine Traffic Rules". In: *IV*. 2021. .
 [8] H. Krasowski et al. *Probabilistic Guarantees for Safe Reinforcement Learning in Continuous Action Spaces via Temporal Logic*. 2023. arXiv: 2212.06129.

CONVEY Online Verification & Synthesis