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CONVEY

Research Questions
How can we extend reinforcement learning to achieve
that safety specifications are always fulfilled?
How can we integrate complex safety specifications of
cyber-physical systems in reinforcement learning?

Provably Safe Reinforcement Learning

Def. Provably safe RL provides guarantees for the safety
specifications during learning and deployment. The spec-
ifications are task-specific, and there are various ways to
define them [1].
Three approaches of provably safe RL:
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We can formulate the projection to the closest safe control
input as an optimization problem [2]:

min
α∈[−1,1]

‖α−αa‖22 subject to α ∈
c⋂
i=1

hi⋃
l=1

〈dil, bil, Eil〉LS

where
•αa ∈ Rp is a parametrization of the input ua = cu+Guαa
and proposed by the reinforcement learning agent,

•〈dil, bil, Eil〉LS is the polynomial level set describing the
collisions i for the halfspace constraint l of the unsafe set.
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•Commonroad-RL is an open-source reinforcement learn-
ing environment for autonomous driving [3].

•For highway driving, goal reaching decreases by 10 % to
87.5% on highD dataset compared to unsafe baseline [4].

•For urban driving, adding more traffic rules is necessary
to increase goal reaching (about 30 % on inD dataset) [5].
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•CommonOcean is a benchmarking suite for motion plan-
ning on the water [6].

•Formalization of traffic rules in temporal logic [7], e.g.,
G
(
keep(xego, xo, ∗) =⇒

(
no turning(xego, ∗)U¬keep(xego, xo, ∗)

))
.
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Fig. 1. Safe RL process for STL safety specification ψ with robustness measure ρ using a safe controller u for a system model xk = f(·).

[17]. Here, the standard approach as described in [18] is to
pose verification as an optimization problem minimizing a
quantifiable satisfaction measure provided by either a temporal
logic specification or another method. Then, any number of
probabilistic optimization procedures can be utilized, e.g.
importance sampling [19], [20], bayesian optimization [21],
[22], ant-colony optimization [23], etc.
Contribution: We propose using RL to improve the perfor-
mance of a probabilistically verified black-box controller such
that the initially verified probabilistic guarantees are likely to
hold for the learned controller. In particular, we separate safety
and performance in a three-step process (see Fig 1), realizing
efficient RL with probabilistic safety guarantees with respect
to temporal logic formulas. For the RL step, we introduce
a model-free RL approach for continuous action and state
spaces that improves the probabilistically verified black-box
controller such that the learned controller exhibits similar
probabilistic safety guarantees as the initial, verified controller.
Finally, we validate our approach experimentally and show
that it can be translated to real-world systems as demonstrated
through experiential results on the Robotarium [24].
Structure: The remainder of this paper is organized as
follows. First, we introduce preliminary concepts in Sec. II.
Second, we present our safe RL approach in Sec. III. Then,
we explain the details of our safe evasion task and its
experimental validation in Sec. IV. Finally, we discuss our
approach in Sec. V and conclude in Sec. VI.

II. PRELIMINARIES

Signal Temporal Logic STL is a language by which rich,
time-varying system behavior can be succinctly expressed.
This language is based on predicates µ ∈ A which are
Boolean-valued functions taking a truth value for each state
x ∈ X . Predicates µ and specifications ψ are defined in
Backus-Naur notation [25, Sec. 2.1] with respect to predicate
functions hµ that define subsets of a state space X where µ
evaluates to True:

µ(x) = True ⇐⇒ hµ(x) ≥ 0, hµ : X → R, (1)

ψ ≜ µ | ¬ψ | ψ1 ∨ ψ2 | ψ1 U[a,b] ψ2,

where, ψ ∈ S, and a, b ∈ R≥0 ∪ {∞}, b ≥ a. Here, S is the
set of all STL specifications which are evaluated over signals
s : R≥0 → Rn, and the space of all signals SRn

= {s | s :
R≥0 → Rn}. Finally, we denote that a signal s satisfies ψ at
time t via (s, t) |= ψ. Furthermore, every STL specification
ψ has a robustness measure ρ that is positive for signals s
that satisfy ψ at a given time t [26].

Definition 1. A function ρ : SRn ×R+ → R is a robustness
measure for an STL specification ψ if it satisfies: ρ(s, t) ≥
0 ⇐⇒ (s, t) |= ψ.

Example 1. Let ψ = ¬(True U[0,2] |s(t)| > 2), then any real-
valued signal s : R≥0 → R satisfies ψ at time t, i.e. (s, t) |=
ψ if ∀ t′ ∈ [t, t + 2], |x(t′)| ≤ 2. A possible robustness
measure is ρ(s, t) = mint′∈[t,t+2] 2 − |x(t′)|.
Note that while defining a robustness measure as per Defini-
tion 1 aligns with prior works [27], [28] and our predicate
definition in (1), it is not the only way of defining such a
measure, e.g. see Definition 3 in [29] or Section 2.3 in [30].
Probabilistic Controller Verification As expressed in Sec. III
in [18], STL provides a natural way of phrasing black-
box controller verification as an optimization problem over
a space of parameters p ∈ P affecting signal generation.
More specifically, let P be a space of parameters signifying
different environmental states in which we expect our closed-
loop system to operate, e.g. for warehouse robotics, these
could be package and drop-off locations, the floor plan, etc.
Additionally, for any environment parameter p, there may
exist disturbances affecting system behavior. Hence, we expect
the closed-loop trajectory realized by our system ϕp to be
a sample of a p-parameterized random variable Φp with
corresponding distribution πp, i.e. ∀ p ∈ P:

ϕp is a sample of Φp which has distribution πp.

Provided an STL specification ψ and robustness measure ρ
as per Definition 1, the probabilistic controller verification
problem aims to determine a lower bound ρ∗ on the robustness
achievable by our closed-loop system, as expressed in the
following theorem [31], with U[·] the uniform distribution.

Modularity and transferability is achieved by separating
safety specifications and performance objectives [8].
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