
Proving Soundness of Top-Down Solvers with Widening and Narrowing

Alexandra Graß
alexandra.grass@tum.de

Supervisors: Jasmin Blanchette and Helmut Seidl
Collaborators: Sarah Tilscher (ConVeY) and Yannick Stade

ConVeY

Motivation

Static analysis serves as justification for complex code op-
timization and can certify the absence of runtime errors.
For example, the if block below can obviously be removed.

Obviously? Static analyzers are complex and highly opti-
mized pieces of code themselves. Are their claims sound?

⇒ To increase the trust in static analysis, we provide a
machine-checked verification of the soundness of the top-
down solver TD with warrowing, using Isabelle/HOL.

Generic Solvers

Using abstract interpretation [1], generic solvers reduce the
problem statement to an abstract domain of values at (pos-
sibly abstract) program points. E. g., to analyze the value
of i at the loop head vs its body, it suffices to consider

where the program state is abstracted to the value of i. An
answer to the problem statement is obtained by computing
a solution to the equations system. In contrast, non-generic
solvers usually follow a syntax-based approach.

The Top-Down Solver TD

The solver TD is a local generic solver. It is implemented
by three mutually recursive functions:
•query obtains the value of an unknown’s right-hand side
•iterate implements the fixpoint iteration necessary to

solve systems with cyclic dependencies
•eval traverses the rhs and recursively queries unknowns
The vanilla version of the TD is sound (Stade et al. [2]).

Acceleration by Widening and Narrowing

In a fixpoint iteration, let a be the previous and b the lat-
est value. To accelerate the fixpoint iteration, results are
deliberately overapproximated by widening (∇). Following
narrowing (

∇

) applications can recover lost precision.
a, b ≤ a∇ b

a u b ≤ a

∇

b ≤ a

The warrowing operator (�) dynamically chooses the ap-
propriate operator.

a� b :=

{
a

∇

b if b ≤ a

a∇ b otherwise

Proof of Soundness

The proof is done by a computation induction, closely fol-
lowing Stade et al. [2]. Show that (a) the computation
preserves the state invariant valid and (b) recursive calls
adapt the solver state according to the update relation.

Warrowing is applied after eval returns the latest value of
a right-hand side. Verify that a warrowing application also
preserves the consistency of the solver state (2nd point):

We identify two crucial properties of warrowing:
•The 2nd operand is a lower bound: b ≤ a� b

•Fixpoint implies narrowing: a� b = a =⇒ b ≤ a

This completes the proof of soundness. �

Current, Future and Other Work

•Termination proof for TDwn
•Verification of TD with side effects
•CvxLean and/or lean-egg

References
[1] P. Cousot et al. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs

by Construction or Approximation of Fixpoints”. In: Conference Record of the Fourth ACM Sym-
posium on Principles of Programming Languages, Los Angeles, California, USA, January 1977.
Ed. by R. M. Graham et al. ACM, 1977, pp. 238–252.

[2] Y. Stade et al. “The Top-Down Solver Verified: Building Confidence in Static Analyzers”. In: Com-
puter Aided Verification - 36th International Conference, CAV 2024, Montreal, QC, Canada, July
24-27, 2024, Proceedings, Part I. Ed. by A. Gurfinkel et al. Vol. 14681. Lecture Notes in Computer
Science. Springer, 2024, pp. 303–324.

ConVeY Online Verification & Synthesis


